Giúp giải chi tiết với ạ.Em cảm ơn nhìu <3 1.Tìm tất cả các giá trị thực của tham số m để : a. hàm số y=sin2x-4sinx+mx nghịch biến trên khoảng (0;π).

Giúp giải chi tiết với ạ.Em cảm ơn nhìu <3 1.Tìm tất cả các giá trị thực của tham số m để : a. hàm số y=sin2x-4sinx+mx nghịch biến trên khoảng (0;π). b.sao cho giá trị nhỏ nhất của hàm số f(x)=x^3-mx+18 trên đoạn [1;3] không lớn hơn 2.

0 bình luận về “Giúp giải chi tiết với ạ.Em cảm ơn nhìu <3 1.Tìm tất cả các giá trị thực của tham số m để : a. hàm số y=sin2x-4sinx+mx nghịch biến trên khoảng (0;π).”

  1. Đáp án:

    a) 

    $\begin{array}{l}
    y = \sin 2x – 4\sin x + mx\\
     \Rightarrow y’ = 2\cos 2x – 4\cos x + m \ge 0\forall x \in \left( {0;\pi } \right)\\
     \Rightarrow 2\cos 2x – 4\cos x \ge  – m\forall x \in \left( {0;\pi } \right)\\
     \Rightarrow g\left( x \right) = 2\cos 2x – 4\cos x \ge  – m\forall x \in \left( {0;\pi } \right)\\
    g’\left( x \right) =  – 4\sin 2x + 4\sin x = 0\\
     \Rightarrow {\mathop{\rm sinx}\nolimits}  = 0/c{\rm{osx = }}\frac{1}{2} \Rightarrow x = \frac{\pi }{3}\\
     \Rightarrow \min {\rm{g}}\left( x \right) = g\left( {\frac{\pi }{3}} \right) =  – 3 \ge  – m\\
     \Rightarrow m \ge 3\\
    b){\min _{f\left( x \right)}} \le 2\forall x \in \left[ {1;3} \right]\\
    f\left( x \right) = {x^3} – mx + 18\\
     \Rightarrow f’\left( x \right) = 3{x^2} – m = 0\\
     + m < 0 \Rightarrow f’\left( x \right) > 0\forall x\\
     \Rightarrow {\min _{f\left( x \right)}} = f\left( 1 \right) = 19 – m \le 2\\
     \Rightarrow m \ge 17\left( {ktm} \right)\\
     + m > 0 \Rightarrow f\left( x \right) = 0 \Rightarrow x =  \pm \sqrt {\frac{m}{3}} 
    \end{array}$

    Thử các TH đều kko có m thỏa mãn

    Vậy ko có m thỏa mãn đề bài

    Bình luận

Viết một bình luận