giúp mik vs Không quy đồng hãy so sánh a,12/47 và 23/93 b,2001+2002/2002+2003 và 2001/2002+2002/2003 / là phần nha ^_^ 09/10/2021 Bởi Parker giúp mik vs Không quy đồng hãy so sánh a,12/47 và 23/93 b,2001+2002/2002+2003 và 2001/2002+2002/2003 / là phần nha ^_^
Đáp án+Giải thích các bước giải: `a,12/47>12/48` `=>12/47>1/4(1)` `23/93<23/92` `=>23/93<1/4(2)` `(1)(2)=>12/47>23/93` `b,(2001+2002)/(2002+2003)` `=2001/(2002+2003)+2002/(2002+2003)` Thấy: `2001/(2002+2003)<2001/2002` `2002/(2002+2003)<2002/(2003)` `=>2001/2002+2002/2003>(20001+2002)/(2002+2003)` Bình luận
Đáp án: $\begin{array}{l}a)\dfrac{{12}}{{47}} > \dfrac{{12}}{{48}} = \dfrac{1}{4}\\\dfrac{{23}}{{93}} < \dfrac{{23}}{{92}} = \dfrac{1}{4}\\ \Rightarrow \dfrac{{12}}{{47}} > \dfrac{1}{4} > \dfrac{{23}}{{93}}\\\text{Vậy}\,\dfrac{{12}}{{47}} > \dfrac{{23}}{{93}}\\b)A = \dfrac{{2001 + 2002}}{{2002 + 2003}}\\B = \dfrac{{2001}}{{2002}} + \dfrac{{2002}}{{2003}}\\Do:\dfrac{{2001}}{{2002}} > \dfrac{{2001}}{{2002 + 2003}}\\\dfrac{{2002}}{{2003}} > \dfrac{{2002}}{{2003 + 2002}}\\ \Rightarrow \dfrac{{2001}}{{2002}} + \dfrac{{2002}}{{2003}} > \dfrac{{2001}}{{2002 + 2003}} + \dfrac{{2002}}{{2002 + 2003}}\\ \Rightarrow B > \dfrac{{2001 + 2002}}{{2002 + 2003}}\\ \Rightarrow B > A\\\text{Vậy}\,\dfrac{{2001}}{{2002 + 2003}} < \dfrac{{2001}}{{2002}} + \dfrac{{2002}}{{2003}}\end{array}$ Bình luận
Đáp án+Giải thích các bước giải:
`a,12/47>12/48`
`=>12/47>1/4(1)`
`23/93<23/92`
`=>23/93<1/4(2)`
`(1)(2)=>12/47>23/93`
`b,(2001+2002)/(2002+2003)`
`=2001/(2002+2003)+2002/(2002+2003)`
Thấy:
`2001/(2002+2003)<2001/2002`
`2002/(2002+2003)<2002/(2003)`
`=>2001/2002+2002/2003>(20001+2002)/(2002+2003)`
Đáp án:
$\begin{array}{l}
a)\dfrac{{12}}{{47}} > \dfrac{{12}}{{48}} = \dfrac{1}{4}\\
\dfrac{{23}}{{93}} < \dfrac{{23}}{{92}} = \dfrac{1}{4}\\
\Rightarrow \dfrac{{12}}{{47}} > \dfrac{1}{4} > \dfrac{{23}}{{93}}\\
\text{Vậy}\,\dfrac{{12}}{{47}} > \dfrac{{23}}{{93}}\\
b)A = \dfrac{{2001 + 2002}}{{2002 + 2003}}\\
B = \dfrac{{2001}}{{2002}} + \dfrac{{2002}}{{2003}}\\
Do:\dfrac{{2001}}{{2002}} > \dfrac{{2001}}{{2002 + 2003}}\\
\dfrac{{2002}}{{2003}} > \dfrac{{2002}}{{2003 + 2002}}\\
\Rightarrow \dfrac{{2001}}{{2002}} + \dfrac{{2002}}{{2003}} > \dfrac{{2001}}{{2002 + 2003}} + \dfrac{{2002}}{{2002 + 2003}}\\
\Rightarrow B > \dfrac{{2001 + 2002}}{{2002 + 2003}}\\
\Rightarrow B > A\\
\text{Vậy}\,\dfrac{{2001}}{{2002 + 2003}} < \dfrac{{2001}}{{2002}} + \dfrac{{2002}}{{2003}}
\end{array}$