Given a,b satisfying 2^a-6 . (7/2)^b= 28^a. Find the sum a +b 08/11/2021 Bởi Lyla Given a,b satisfying 2^a-6 . (7/2)^b= 28^a. Find the sum a +b
$\text{Ta có:}$ $2^{a – 6} . (\dfrac{7}{2})^{b} = 28^{a}$ $⇒ 2^{a – 6} . \dfrac{7^{b}}{2^{b}} = (7 . 2^{2})^{a}$ $⇒ 2^{a – 6 – a} . 7^{b} = 7^{a} . 2^{2a}$ $⇒ a – 6 – b = 2a ; b = a$ $⇒ a – 6 – a = 2a ; b = a$ $⇒ -2a = 6 ; b = a$ $⇒ a = -3 ; b = a = -3$ $⇒ a + b = -3 + (-3) = -6$ $\text{Vậy}$ $a + b = -6$ Bình luận
Đáp án: $\begin{array}{l}{2^{a – 6}}.{\left( {\dfrac{7}{2}} \right)^b} = {28^a}\\ \Rightarrow {2^{a – 6}}.\dfrac{{{7^b}}}{{{2^b}}} = {\left( {{2^2}.7} \right)^a}\\ \Rightarrow {2^{a – 6 – b}}{.7^b} = {2^{2a}}{.7^a}\\ \Rightarrow \left\{ \begin{array}{l}a – 6 – b = 2a\\b = a\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}a – 6 – a = 2a\\b = a\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}2a = – 6\\b = a\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}a = – 3\\b = a = – 3\end{array} \right.\\ \Rightarrow a + b = – 3 + \left( { – 3} \right) = – 6\end{array}$ Bình luận
$\text{Ta có:}$
$2^{a – 6} . (\dfrac{7}{2})^{b} = 28^{a}$
$⇒ 2^{a – 6} . \dfrac{7^{b}}{2^{b}} = (7 . 2^{2})^{a}$
$⇒ 2^{a – 6 – a} . 7^{b} = 7^{a} . 2^{2a}$
$⇒ a – 6 – b = 2a ; b = a$
$⇒ a – 6 – a = 2a ; b = a$
$⇒ -2a = 6 ; b = a$
$⇒ a = -3 ; b = a = -3$
$⇒ a + b = -3 + (-3) = -6$
$\text{Vậy}$ $a + b = -6$
Đáp án:
$\begin{array}{l}
{2^{a – 6}}.{\left( {\dfrac{7}{2}} \right)^b} = {28^a}\\
\Rightarrow {2^{a – 6}}.\dfrac{{{7^b}}}{{{2^b}}} = {\left( {{2^2}.7} \right)^a}\\
\Rightarrow {2^{a – 6 – b}}{.7^b} = {2^{2a}}{.7^a}\\
\Rightarrow \left\{ \begin{array}{l}
a – 6 – b = 2a\\
b = a
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
a – 6 – a = 2a\\
b = a
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
2a = – 6\\
b = a
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
a = – 3\\
b = a = – 3
\end{array} \right.\\
\Rightarrow a + b = – 3 + \left( { – 3} \right) = – 6
\end{array}$