gpt a) 3x^2-x-1=0 b) x^2+2x-2=0 c) x^2-4x-6=0

gpt
a) 3x^2-x-1=0
b) x^2+2x-2=0
c) x^2-4x-6=0

0 bình luận về “gpt a) 3x^2-x-1=0 b) x^2+2x-2=0 c) x^2-4x-6=0”

  1. $a)$ 

    $ 3x^2 -x -1 = 0 \to 3(x^2 – \dfrac{1}{3}x – \dfrac{1}{3}) = 0$

    $ \to x^2 – \dfrac{1}{3}x – \dfrac{1}{3} = 0$

    $ \to x^2 -\dfrac{1- \sqrt{13}}{6}x – \dfrac{1+ \sqrt{13}}{6}x – \dfrac{1- \sqrt{13}}{6}. \dfrac{1+ \sqrt{13}}{6}$

    $\to x(x – \dfrac{1- \sqrt{13}}{6}) – \dfrac{1+ \sqrt{13}}{6}( x – \dfrac{1- \sqrt{13}}{6})$

    $ \to (x – \dfrac{1- \sqrt{13}}{6}) ( x – \dfrac{1+ \sqrt{13}}{6}) = 0$

    $ \to$ \(\left[ \begin{array}{l}x= \dfrac{1- \sqrt{13}}{6}\\x=\dfrac{1+ \sqrt{13}}{6}\end{array} \right.\) 

    $b)$

    $ x^2 + 2x  -2 = 0 $

    $\to x^2 + (\sqrt{3}+1)x – (\sqrt{3}-1)x – (\sqrt{3}+1)(\sqrt{3}-1) =0$

    $ \to x(x + \sqrt{3}+1) – (\sqrt{3}-1)(x+ \sqrt{3}+1) = 0$

    $ \to [x – (\sqrt{3}-1)](x + \sqrt{3}+1) = 0$

    $ \to$ \(\left[ \begin{array}{l}x= \sqrt{3}-1\\x=-1 -\sqrt{3} \end{array} \right.\) 

    $c)$

    $ x^2- 4x -6 = 0$

    $\to x^2 – (2-\sqrt{10})x – (2+ \sqrt{10}x + (2-\sqrt{10})(2+ \sqrt{10}) = 0$

    $\to x[x – (2-\sqrt{10})] – (2+ \sqrt{10})[x – (2-\sqrt{10})] = 0$

    $\to[x- (2+ \sqrt{10})][x – (2-\sqrt{10})] = 0$

    $ \to$ \(\left[ \begin{array}{l}x=2+ \sqrt{10} \\x=2-\sqrt{10}\end{array} \right.\) 

    Bình luận
  2. Đáp án+Giải thích các bước giải:

    `a)3x^2-x-1=0`

    `<=>3(x^2-1/3x-1/3)=0`

    `<=>x^2-1/3x-1/3=0`

    `<=>x^2-2.x.\frac{1}{6}+(1/6)^2-13/36`=0`

    `<=>(x-1/6)^2-(\frac{\sqrt{13}}{6})^2`

    `<=>(x-1/6-\frac{\sqrt{13}}{6})(x-1/6+\frac{\sqrt{13}}{6})=0`

    `TH1:`

    `x-1/6-\frac{\sqrt{13}}{6}=0`

    `<=>x-1/6=0+\frac{\sqrt{13}}{6}`

    `<=>x=\frac{\sqrt{13}}{6}+1/6`

    `<=>x=\frac{\sqrt{13}+1}{6}`

    `TH2:`

    `x-1/6+\frac{\sqrt{13}}{6}=0`

    `<=>x-1/6=0-\frac{\sqrt{13}}{6}`

    `<=>x=-\frac{\sqrt{13}}{6}+1/6`

    `<=>x=\frac{1-\sqrt{13}}{6}`

     Vậy `S=\{\frac{\sqrt{13}+1}{6};\frac{1-\sqrt{13}}{6}\}`

    `b)x^2+2x-2=0`

    `<=>x^2+2x+1-3=0`

    `<=>x^2+2.x.1+1^2-3=0`

    `<=>(x-1)^2-(\sqrt{3})^2=0`

    `<=>(x-1-\sqrt{3})(x-1+\sqrt{3})=0`

    `TH1:`

    `x-1-\sqrt{3}=0`

    `<=>x-1=0+\sqrt{3}`

    `<=>x=\sqrt{3}+1`

    `TH2:`

    `x-1+\sqrt{3}=0`

    `<=>x-1=0-\sqrt{3}`

    `<=>x=-\sqrt{3}+1`

    `<=>x=1-\sqrt{3}`

     Vậy `S=\{\sqrt{3}+1;1-\sqrt{3}\}`

    `c)x^2-4x-6=0`

    `<=>x^2-4x+4-10=0`

    `<=>(x-2)^2-(\sqrt{10})^2=0`

    `<=>(x-2-\sqrt{10})(x-2+\sqrt{10})=0`

    `TH1:x-2-\sqrt{10}=0`

    `<=>x-2=0+\sqrt{10}`

    `<=>x=\sqrt{10}+2`

    `TH2:x-2+\sqrt{10}=0`

    `<=>x-2=0-\sqrt{10}`

    `<=>x=-\sqrt{10}+2`

    `<=>x=2-\sqrt{10}`

     Vậy `S=\{\sqrt{10}+2;2-\sqrt{10}\}`

    Bình luận

Viết một bình luận