Hai chiếc xe máy chuyển động đều trên cùng một đường thẳng. Nếu chúng đi lại gần nhau thì cứ 6 phút khoảng cách giữa chúng lại giảm đi 6 km. Nếu chúng

Hai chiếc xe máy chuyển động đều trên cùng một đường thẳng. Nếu chúng đi lại gần nhau thì cứ 6 phút khoảng cách giữa chúng lại giảm đi 6 km. Nếu chúng đi cùng chiều thì cứ sau 12 phút khoảng cách giữa chúng tăng lên 2 km. Tính vận tốc của mỗi xe.

0 bình luận về “Hai chiếc xe máy chuyển động đều trên cùng một đường thẳng. Nếu chúng đi lại gần nhau thì cứ 6 phút khoảng cách giữa chúng lại giảm đi 6 km. Nếu chúng”

  1. Đáp án:

    v1 = 35km/h

    v2 = 25km/h 

    Giải thích các bước giải:

    Đổi: 6 phút = 0,1h

    12 phút = 0,2h

    Khi hai xe đi lại gần nhau:

    $\begin{array}{l}
    {s_1} + {s_2} = \Delta s \Leftrightarrow \left( {{v_1} + {v_2}} \right)t = \Delta s\\
     \Leftrightarrow \left( {{v_1} + {v_2}} \right).0,1 = 6 \Leftrightarrow {v_1} + {v_2} = 60\left( 1 \right)
    \end{array}$

    Khi hai xe đi cùng chiều nhau:

    $\begin{array}{l}
    {s_1}’ + {s_2}’ = \Delta s’ \Leftrightarrow \left( {{v_1} – {v_2}} \right)t’ = \Delta s’\\
     \Leftrightarrow \left( {{v_1} – {v_2}} \right).0,2 = 2 \Leftrightarrow {v_1} – {v_2} = 10\left( 2 \right)
    \end{array}$

    Ta có: $\left( 1 \right),\left( 2 \right) \Rightarrow \left\{ \begin{array}{l}
    {v_1} = 35km/h\\
    {v_2} = 25km/h
    \end{array} \right.$

    Bình luận
  2. Đáp án:

     

    Gọi a, b lần lượt là vận tốc của hai xe (a>b)
    * khi c/đ cùng chiều
    0,2a-0,2b=2
    a-b=10(1)
    * khi chuyển động ngược chiều :
    0,1a+0,1b=6
    a+b=60 (2)
    giải hpt (1)(2)
    a=35km/h
    b=25km/h

                        

    Bình luận

Viết một bình luận