Khi chia một số tự nhiên gồm ba chữ số như nhau cho một số tự nhiên gồm
ba chữ số khác nhau, ta được thương là 2 và còn dư. Nếu xóa một chữ số ở số bị chia và xoát một chữ số ở số chia thì thương của phép chia vẫn bằng 2 nhưng số dư
giảm hơn trước là 100. Tìm số bị chia và số chia lúc đầu.
Đáp án:
Giải thích các bước giải:
Gọi số bị chia ban đầu là: aaa
Gọi số chia ban đầu là: bbb
Gọi số dư là: r
Ta có:
+, aaa = 2 . bbb + r – 100
+, aa = 2 ; bb +r
(-) aaa – aa = 2bbb + r – 2bb +100 -r
⇔ a . 100 + aa – aa = 2.(b . 100 + bb ) -2bb =100
⇔ a . 100 =200 . b + 2.bb – 2.bb +100
⇔ a . 100=b. 200 +100
⇒ a = 2b +1
Mà 1 ≤a ≤ 9
⇒ 1 ≤ b ≤ 4
…
Vậy là ta có các cặp số: – 555 và 222
– 777 và 333
– 999 và 444
Gọi số bị chia ban đầu là: aaa
Gọi số chia ban đầu là: bbb
Gọi số dư là: r
Ta có:
+, aaa = 2 . bbb + r – 100
+, aa = 2 ; bb +r
(-) aaa – aa = 2bbb + r – 2bb +100 -r
⇔ a . 100 + aa – aa = 2.(b . 100 + bb ) -2bb =100
⇔ a . 100 =200 . b + 2.bb – 2.bb +100
⇔ a . 100=b. 200 +100
⇒ a = 2b +1
Mà 1 ≤a ≤ 9
⇒ 1 ≤ b ≤ 4
$\left[\begin{array}{ccc}b&1&2&3&4\\a&3&5&7&9\\&loại&chọn&chọn&chọn\end{array}\right]$
Vậy là ta có các cặp số: – 555 và 222
– 777 và 333
– 999 và 444