lim x->1 (x^2-1)/(((căn x^2) +3) + ((căn x) -3)) 25/11/2021 Bởi Kinsley lim x->1 (x^2-1)/(((căn x^2) +3) + ((căn x) -3))
Đáp án: 2 Giải thích các bước giải: $\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} – 1}}{{\sqrt {{x^2} + 3} + \sqrt x – 3}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x – 1} \right)\left( {x + 1} \right)}}{{\sqrt {{x^2} + 3} – 2 + \sqrt x – 1}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x – 1} \right)\left( {x + 1} \right)}}{{\frac{{{x^2} – 1}}{{\sqrt {{x^2} + 3} + 2}} + \frac{{x – 1}}{{\sqrt x + 1}}}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{x + 1}}{{\frac{{x + 1}}{{\sqrt {{x^2} + 3} + 2}} + \frac{1}{{\sqrt x + 1}}}}\\ = \frac{{1 + 1}}{{\frac{{1 + 1}}{{\sqrt {1 + 3} + 2}} + \frac{1}{{1 + 1}}}} = 2\end{array}$ Bình luận
Đáp án: 2
Giải thích các bước giải:
$\begin{array}{l}
\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} – 1}}{{\sqrt {{x^2} + 3} + \sqrt x – 3}}\\
= \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x – 1} \right)\left( {x + 1} \right)}}{{\sqrt {{x^2} + 3} – 2 + \sqrt x – 1}}\\
= \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x – 1} \right)\left( {x + 1} \right)}}{{\frac{{{x^2} – 1}}{{\sqrt {{x^2} + 3} + 2}} + \frac{{x – 1}}{{\sqrt x + 1}}}}\\
= \mathop {\lim }\limits_{x \to 1} \frac{{x + 1}}{{\frac{{x + 1}}{{\sqrt {{x^2} + 3} + 2}} + \frac{1}{{\sqrt x + 1}}}}\\
= \frac{{1 + 1}}{{\frac{{1 + 1}}{{\sqrt {1 + 3} + 2}} + \frac{1}{{1 + 1}}}} = 2
\end{array}$