$\lim_{} \frac{\sqrt[]{n}-2}{n+\sqrt[]{n}+1 }$ 30/10/2021 Bởi Hailey $\lim_{} \frac{\sqrt[]{n}-2}{n+\sqrt[]{n}+1 }$
`lim (\sqrt{n} – 2)/(n + \sqrt{n} + 1)` `= lim` $\dfrac{n.(\dfrac{1}{\sqrt{n}} – \dfrac{2}{n})}{n(1 + \dfrac{1}{\sqrt{n}} + \dfrac{1}{n})}$ `= (0 – 0)/(1 + 0 + 0)` `= 0` Bình luận
`lim(sqrtn-2)/(n+sqrtn+1)=lim(1/sqrtn-2/n)/(1+1/sqrtn+1/n)=0/1=0`
`lim (\sqrt{n} – 2)/(n + \sqrt{n} + 1)`
`= lim` $\dfrac{n.(\dfrac{1}{\sqrt{n}} – \dfrac{2}{n})}{n(1 + \dfrac{1}{\sqrt{n}} + \dfrac{1}{n})}$
`= (0 – 0)/(1 + 0 + 0)`
`= 0`