$\lim_{x \to 0^{+}}$$\frac{\sqrt[]{x} }{x}$ Lam ho minh voi ah 21/10/2021 Bởi Caroline $\lim_{x \to 0^{+}}$$\frac{\sqrt[]{x} }{x}$ Lam ho minh voi ah
$\lim\limits_{x\to 0^+}\dfrac{\sqrt{x}}{x}$ $=\lim\limits_{x\to 0^+}\dfrac{1}{\sqrt{x}}$ $=+\infty$ (vì $\sqrt{x}>0$) Bình luận
$\lim_{x \to 0^{+}} \frac{\sqrt{x}}{x}$ `=` $\lim_{x \to 0^{+}} \frac{\sqrt{x}}{x}.\frac {\sqrt{x}}{\sqrt{x}}$ `=` $\lim_{x \to 0^{+}} \frac {x}{x\sqrt{x}}$ `=` $\lim_{x \to 0^{+}} \frac{1}{\sqrt{x}}$ `= +∞` Bình luận
$\lim\limits_{x\to 0^+}\dfrac{\sqrt{x}}{x}$
$=\lim\limits_{x\to 0^+}\dfrac{1}{\sqrt{x}}$
$=+\infty$ (vì $\sqrt{x}>0$)
$\lim_{x \to 0^{+}} \frac{\sqrt{x}}{x}$
`=` $\lim_{x \to 0^{+}} \frac{\sqrt{x}}{x}.\frac {\sqrt{x}}{\sqrt{x}}$
`=` $\lim_{x \to 0^{+}} \frac {x}{x\sqrt{x}}$
`=` $\lim_{x \to 0^{+}} \frac{1}{\sqrt{x}}$
`= +∞`