M=$\frac{3}{5.7}$ + $\frac{3}{7.9}$ +…+ $\frac{3}{59.61}$

M=$\frac{3}{5.7}$ + $\frac{3}{7.9}$ +…+ $\frac{3}{59.61}$

0 bình luận về “M=$\frac{3}{5.7}$ + $\frac{3}{7.9}$ +…+ $\frac{3}{59.61}$”

  1. Đáp án:

     

    Giải thích các bước giải:

     $M=\dfrac{3}{5.7}+\dfrac{3}{7.9}+…+\dfrac{3}{59.61}$

    $ $

    $=\dfrac{3}{2}.(\dfrac{2}{5.7}+\dfrac{2}{7.9}+…+\dfrac{3}{59.61})$

    $ $

    $=\dfrac{3}{2}.(\dfrac{1}{5}-\dfrac{1}{61})$

    $ $

    $=\dfrac{3}{2}.\dfrac{56}{305}$

    $ $

    $=\dfrac{84}{305}$

    Bình luận
  2. $M = \dfrac{3}{5.7}+ \dfrac{3}{7.9} + …. + \dfrac{3}{59.61}$

    $⇔ M : 3 = \dfrac{1}{5.7}+ \dfrac{1}{7.9} + …. + \dfrac{1}{59.61}$

    $⇔ M : 3 .2 = \dfrac{2}{5.7}+ \dfrac{2}{7.9} + …. + \dfrac{2}{59.61}$

    $⇔M : \dfrac{3}{2} = \dfrac{1}{5} – \dfrac{1}{7} + \dfrac{1}{7} – \dfrac{1}{9} + …. + \dfrac{1}{59} – \dfrac{1}{61}$

    $⇔ M : \dfrac{3}{2} = \dfrac{1}{5} – \dfrac{1}{61}$

    $⇔ M : \dfrac{3}{2} = \dfrac{56}{305}$

    $⇔ M =\dfrac{84}{305}$

     

    Bình luận

Viết một bình luận