m.n giải giúp với ạ F(x)=x3-3×2+6x-8 G(x)=-6×2+x3-8+12x 1. tính F(x)+ G(x) 2.Tính F(1) 3. Tìm x để F(x) -G(x)=0 21/07/2021 Bởi Quinn m.n giải giúp với ạ F(x)=x3-3×2+6x-8 G(x)=-6×2+x3-8+12x 1. tính F(x)+ G(x) 2.Tính F(1) 3. Tìm x để F(x) -G(x)=0
Đáp án: Giải thích các bước giải: 1) F(x)+G(x)=(x^3-3x^2+6x-8)+(-6x^2+x^3-8+12x) =x^3-3x^2+6x-8-6x^2+x^3-8+12x =(x^3+x^3)+(-3x^2-6x^2)+(-8-8)+(6x+12x) =2x^3-9x^2-16+18x 2)F(1)=1^3-3.1^2+6.1-8 =1-3+6-8 =-4 vậy F(1)=-4 3)F(x)-G(x)=(x^3-3x^2+6x-8)-(-6x^2+x^3-8+12x) =x^3-3x^2+6x-8+6x^2-x^3+8-12x =(x^3-x^3)+(-3x^2+6x^2)+(-8+8)+(6x+12x) = 3x^2+18x có F(x)-G(x)=0⇒3x^2+18x=0 ⇒3x(x+6)=0 ⇒3x=0 hoặc x+6=0 ⇒x=0 hoặc x=-6 vậy x∈{0;-6) Bình luận
Lời giải: 1. $f(x)+g(x)=x^3-3x^2+6x-8-6x^2+x^3-8+12x\\=2x^3-9x^2+18x-16$ 2. $f(1)=1^3-3.1^2+6.1-8=1-3+6-8=-4$ 3. $f(x)-g(x)=x^3-3x^2+6x-8+6x^2-x^3+8-12x\\=3x^2-6x$ \(⇔ 3x(x-2)=0\) \(⇔ \left[ \begin{array}{l}x=0\\x=2\end{array} \right.\) BẠN XEM THAM KHẢO NHA!!! Bình luận
Đáp án:
Giải thích các bước giải:
1) F(x)+G(x)=(x^3-3x^2+6x-8)+(-6x^2+x^3-8+12x)
=x^3-3x^2+6x-8-6x^2+x^3-8+12x
=(x^3+x^3)+(-3x^2-6x^2)+(-8-8)+(6x+12x)
=2x^3-9x^2-16+18x
2)F(1)=1^3-3.1^2+6.1-8
=1-3+6-8
=-4
vậy F(1)=-4
3)F(x)-G(x)=(x^3-3x^2+6x-8)-(-6x^2+x^3-8+12x)
=x^3-3x^2+6x-8+6x^2-x^3+8-12x
=(x^3-x^3)+(-3x^2+6x^2)+(-8+8)+(6x+12x)
= 3x^2+18x
có F(x)-G(x)=0⇒3x^2+18x=0
⇒3x(x+6)=0
⇒3x=0 hoặc x+6=0
⇒x=0 hoặc x=-6
vậy x∈{0;-6)
Lời giải:
1. $f(x)+g(x)=x^3-3x^2+6x-8-6x^2+x^3-8+12x\\=2x^3-9x^2+18x-16$
2. $f(1)=1^3-3.1^2+6.1-8=1-3+6-8=-4$
3. $f(x)-g(x)=x^3-3x^2+6x-8+6x^2-x^3+8-12x\\=3x^2-6x$
\(⇔ 3x(x-2)=0\)
\(⇔ \left[ \begin{array}{l}x=0\\x=2\end{array} \right.\)
BẠN XEM THAM KHẢO NHA!!!