Mọi người giải giúp e bài này với ạ! E cảm ơn ạ Tìm tất cả các giá trị thực của tham số m để đường thẳng y=mx-m+1 cắt đths y=x^3-3x^2+x+2 tại A,B,C sa

Mọi người giải giúp e bài này với ạ! E cảm ơn ạ
Tìm tất cả các giá trị thực của tham số m để đường thẳng y=mx-m+1 cắt đths y=x^3-3x^2+x+2 tại A,B,C sao cho AB=BC

0 bình luận về “Mọi người giải giúp e bài này với ạ! E cảm ơn ạ Tìm tất cả các giá trị thực của tham số m để đường thẳng y=mx-m+1 cắt đths y=x^3-3x^2+x+2 tại A,B,C sa”

  1. Xét ptrinh hoành độ giao điểm

    $x^3 – 3x^2 + x + 2 = mx – m + 1$

    $<-> x^3 – 3x^2 + (1-m)x + 1+m = 0$

    $<-> (x-1)(x^2 – 2x – m -1) = 0$

    Để hai đồ thị cắt nhau tại 3 điểm phân biệt, ptrinh hoành độ giao điểm phải có 3 nghiệm phân biệt. Do đó, ptrinh

    $x^2 – 2x – m -1 = 0$

    $\Delta’ = 1-(-m-1) = m$

    phải có 2 nghiệm phân biệt khác 1. Do đó $\Delta’ > 0$ và $1 – 2 – m – 1 \neq 0$

    Vậy $m > 0$.

    Khi đó, hoành độ của 2 điểm là $1-\sqrt{m}$ và $1 + \sqrt{m}$

    Ta thấy hoành độ hai điểm này đối xứng qua đường thẳng x = 1.

    Vậy để thỏa mãn đề bài thì B phải là điểm có hoành độ là 1.

    DO đó, tọa độ 3 điểm A, B, C là

    $A(1 – \sqrt{m},1 – m\sqrt{m}); B(1, 1); C(1 + \sqrt{m}, 1 + m\sqrt{m})$

    Ta thấy rằng

    $\dfrac{x_A + x_C}{2} = \dfrac{1-\sqrt{m} + 1 + \sqrt{m}{2} = 1 = x_B$

    $\dfrac{y_A + y_C}{2} = \dfrac{1 – m\sqrt{m} + 1 + m\sqrt{m}}{2} = 1 = y_B$

    Vậy B là trung điểm của AC, do đó luôn có AB = BC.

    Vậy điều kiện duy nhất cần thỏa mãn là $m > 0$.

    Bình luận

Viết một bình luận