Một vật có khối lượng m = 3 kg thả rơi không vận tốc đầu từ độ cao Z = 4 m so với mặt trước. chọn mốc thế năng ở mặt trước; lấy g bằng 10 m trên giây bình phương
A) tính thế năng trọng trường của vật từ độ cao Z và vận tốc của vật ngay khi chạm nước? Bỏ qua sức cản của không khí
B) khi chạm nước, vật đi thêm được quãng đường S = 0.5 M (đi theo phương thẳng đứng) thì dừng lại. Giả sử, lực cản trung bình của nước có độ lớn gấp 15 lần lực cản trung bình của không khí. Tính lực cản trung bình của không khí tác dụng lên vật?
CHÚC BẠN HỌC TỐT !!!!!!!!!!!
Đáp án:
$a) W_{tZ} = 120 (J)$
$v = 6\sqrt{5} (m/s)$
$b) F_c = \dfrac{270}{23} (N)$
Giải thích các bước giải:
$m = 3 (kg)$
$z = 4 (m)$
$g = 10 (m/s^2)$
Chọn gốc thế năng tại mặt nước.
$a)$
Thế năng trọng trường của vật tại độ cao $Z$ là:
$W_{tz} = mgz = 3.10.4 = 120 (J)$
Động năng của vật ngay khi chạm nước là:
`W_{đ} = 1/2 mv^2 = W_{tz}`
`<=> 1/2 .3.v^2 = 120`
`=> v = 6\sqrt{5}` $(m/s)$
$b)$
$S = 0,5 (m)$
Gọi độ lớn lực cản trung bình của không khí là $F_c$.
Độ lớn lực cản của nước là:
`F_c’ = 15F_c`
Gọi $v’$ là vận tốc của vật ngay khi chạm mặt nước.
Áp dụng định lí động năng cho vật trong giai đoạn bắt đầu rơi đến khi chạm mặt nước và từ khi chạm mặt nước đến lúc dừng lại:
`1/2 mv’^2 = A_{P1} + A_{Fc}`
`= mgz – F_c.z`
`- 1/2 mv’^2 = A_{P2} + A_{Fc’}`
`= mgS – 15F_c.S`
`=> mgz – F_c.z + mgS – 15F_c.S = 0`
`=> F_c.(z + 15S) = mg(z + S)`
`=> F_c = {mg(z + S)}/{z + 15S} = {3.10.(4 + 0,5)}/{4 + 15.0,5}`
`= 270/23 (N)`