N=(√x – 1/√x ):(√x-1/ √x + 1-√x / x+√x ) Rút gọn 03/10/2021 Bởi Reagan N=(√x – 1/√x ):(√x-1/ √x + 1-√x / x+√x ) Rút gọn
$\frac{\sqrt{x} -1}{\sqrt{x}}$ :($\frac{\sqrt{x}-1}{\sqrt{x}+1}$ +$\frac{1-\sqrt{x}}{x+\sqrt{x}}$ ) =$\frac{\sqrt{x} -1}{\sqrt{x}}$ :($\frac{(\sqrt{x}-1)\sqrt{x}}{(\sqrt{x}+1)\sqrt{x}}$ +$\frac{1-\sqrt{x}}{x+\sqrt{x}}$ ) =$\frac{\sqrt{x} -1}{\sqrt{x}}$ :($\frac{x-\sqrt{x}}{x+\sqrt{x}}$ +$\frac{1-\sqrt{x}}{x+\sqrt{x}}$ ) =$\frac{\sqrt{x} -1}{\sqrt{x}}$ :$\frac{x-2\sqrt{x}+1}{x+\sqrt{x}}$ =$\frac{\sqrt{x} -1}{\sqrt{x}}$ :$\frac{(\sqrt{x}-1)^{2}}{\sqrt{x}(\sqrt{x}+1)}$ =$\frac{\sqrt{x} -1}{\sqrt{x}}$ .$\frac{\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}-1)^{2}}$ =$\frac{\sqrt{x}+1}{\sqrt{x}-1}$ Bình luận
$\frac{\sqrt{x} -1}{\sqrt{x}}$ :($\frac{\sqrt{x}-1}{\sqrt{x}+1}$ +$\frac{1-\sqrt{x}}{x+\sqrt{x}}$ )
=$\frac{\sqrt{x} -1}{\sqrt{x}}$ :($\frac{(\sqrt{x}-1)\sqrt{x}}{(\sqrt{x}+1)\sqrt{x}}$ +$\frac{1-\sqrt{x}}{x+\sqrt{x}}$ )
=$\frac{\sqrt{x} -1}{\sqrt{x}}$ :($\frac{x-\sqrt{x}}{x+\sqrt{x}}$ +$\frac{1-\sqrt{x}}{x+\sqrt{x}}$ )
=$\frac{\sqrt{x} -1}{\sqrt{x}}$ :$\frac{x-2\sqrt{x}+1}{x+\sqrt{x}}$
=$\frac{\sqrt{x} -1}{\sqrt{x}}$ :$\frac{(\sqrt{x}-1)^{2}}{\sqrt{x}(\sqrt{x}+1)}$
=$\frac{\sqrt{x} -1}{\sqrt{x}}$ .$\frac{\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}-1)^{2}}$
=$\frac{\sqrt{x}+1}{\sqrt{x}-1}$