n ≥ 2 n ∈ N 1/2^3 + 1/3^3 + 1/4^3 + …….. + 1/n^3 < 1/4

n ≥ 2 n ∈ N
1/2^3 + 1/3^3 + 1/4^3 + …….. + 1/n^3 < 1/4

0 bình luận về “n ≥ 2 n ∈ N 1/2^3 + 1/3^3 + 1/4^3 + …….. + 1/n^3 < 1/4”

  1. `=>` Tặng bạn 

    Ta có :

    $\(A=\dfrac{1}{2^3}+\dfrac{1}{3^3}+\dfrac{1}{4^3}+……+\dfrac{1}{n^3}\)$

    $\(2A=\dfrac{2}{2^3}+\dfrac{2}{3^3}+\dfrac{2}{4^3}+…….+\dfrac{2}{n^3}\)$

    Vì :

    $\(\dfrac{2}{2^3}< \dfrac{2}{1.2.3}\)$

    $\(\dfrac{2}{3^3}<  \dfrac{1}{2.3.4}\)$

    ……………………………

    $\(\dfrac{2}{n^3}< \dfrac{2}{\left(n-1\right)n\left(n+1\right)}\)$

    $\(\Rightarrow2A< \dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+……………….+\dfrac{2}{\left(n-1\right)n\left(n+1\right)}\)$

    $\(2A< \dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+…………..+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\)$

    $\(2A< \dfrac{1}{1.2}-\dfrac{1}{n\left(n+1\right)}\)$

    $\(\Rightarrow A< \left(\dfrac{1}{1.2}-\dfrac{1}{n\left(n+1\right)}\right):2\)$

    $\(A< \dfrac{1}{4}-\dfrac{1}{2n\left(n+1\right)}\)$

    $\(\Rightarrow A< \dfrac{1}{4}\) \(\rightarrowđpcm\)$

    Bình luận

Viết một bình luận