Nghiệm của phương trình sin ( 3x – 5pi / 6 ) + cos ( 3x + 3pi / 4 ) = 0 24/07/2021 Bởi Lyla Nghiệm của phương trình sin ( 3x – 5pi / 6 ) + cos ( 3x + 3pi / 4 ) = 0
Đáp án: $\begin{array}{l}\sin \left( {3x – \dfrac{{5\pi }}{6}} \right) + \cos \left( {3x + \dfrac{{3\pi }}{4}} \right) = 0\\ \Rightarrow \sin \left( {3x – \dfrac{{5\pi }}{6}} \right) = – \cos \left( {3x + \dfrac{{3\pi }}{4}} \right)\\ \Rightarrow \sin \left( {3x – \dfrac{{5\pi }}{6}} \right) = \cos \left( {3x + \dfrac{{3\pi }}{4} + \pi } \right)\\ \Rightarrow \sin \left( {3x – \dfrac{{5\pi }}{6}} \right) = \sin \left( {\dfrac{\pi }{2} – 3x – \dfrac{{3\pi }}{4} – \pi } \right)\\ \Rightarrow \sin \left( {3x – \dfrac{{5\pi }}{6}} \right) = \sin \left( { – \dfrac{{5\pi }}{4} – 3x} \right)\\ \Rightarrow \left[ \begin{array}{l}3x – \dfrac{{5\pi }}{6} = – \dfrac{{5\pi }}{4} – 3x + k2\pi \\3x – \dfrac{{5\pi }}{6} = \pi + \dfrac{{5\pi }}{4} + 3x + k2\pi \left( {ktm} \right)\end{array} \right.\\ \Rightarrow \left[ {x = \dfrac{{ – 5\pi }}{{72}} + \dfrac{{k\pi }}{3}} \right.\\Vay\,x = \dfrac{{ – 5\pi }}{{72}} + \dfrac{{k\pi }}{3}\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
\sin \left( {3x – \dfrac{{5\pi }}{6}} \right) + \cos \left( {3x + \dfrac{{3\pi }}{4}} \right) = 0\\
\Rightarrow \sin \left( {3x – \dfrac{{5\pi }}{6}} \right) = – \cos \left( {3x + \dfrac{{3\pi }}{4}} \right)\\
\Rightarrow \sin \left( {3x – \dfrac{{5\pi }}{6}} \right) = \cos \left( {3x + \dfrac{{3\pi }}{4} + \pi } \right)\\
\Rightarrow \sin \left( {3x – \dfrac{{5\pi }}{6}} \right) = \sin \left( {\dfrac{\pi }{2} – 3x – \dfrac{{3\pi }}{4} – \pi } \right)\\
\Rightarrow \sin \left( {3x – \dfrac{{5\pi }}{6}} \right) = \sin \left( { – \dfrac{{5\pi }}{4} – 3x} \right)\\
\Rightarrow \left[ \begin{array}{l}
3x – \dfrac{{5\pi }}{6} = – \dfrac{{5\pi }}{4} – 3x + k2\pi \\
3x – \dfrac{{5\pi }}{6} = \pi + \dfrac{{5\pi }}{4} + 3x + k2\pi \left( {ktm} \right)
\end{array} \right.\\
\Rightarrow \left[ {x = \dfrac{{ – 5\pi }}{{72}} + \dfrac{{k\pi }}{3}} \right.\\
Vay\,x = \dfrac{{ – 5\pi }}{{72}} + \dfrac{{k\pi }}{3}
\end{array}$