p= √X +1/ √X-2+2 √X/ √x+2+2+5 √x/4-x a) Rút gọn P b) Tìm x để P= 1 29/11/2021 Bởi Maria p= √X +1/ √X-2+2 √X/ √x+2+2+5 √x/4-x a) Rút gọn P b) Tìm x để P= 1
Đáp án: $\begin{array}{l}a)DKxd:x \ge 0;x \ne 4\\P = \dfrac{{\sqrt x + 1}}{{\sqrt x – 2}} + \dfrac{{2\sqrt x }}{{\sqrt x + 2}} + \dfrac{{2 + 5\sqrt x }}{{4 – x}}\\ = \dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x + 2} \right) + 2\sqrt x \left( {\sqrt x – 2} \right) – 2 – 5\sqrt x }}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}\\ = \dfrac{{x + 3\sqrt x + 2 + 2x – 4\sqrt x – 2 – 5\sqrt x }}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}\\ = \dfrac{{3x – 6\sqrt x }}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}\\ = \dfrac{{3\sqrt x \left( {\sqrt x – 2} \right)}}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}\\ = \dfrac{{3\sqrt x }}{{\sqrt x + 2}}\\b)P = 1\\ \Rightarrow \dfrac{{3\sqrt x }}{{\sqrt x + 2}} = 1\\ \Rightarrow 3\sqrt x = \sqrt x + 2\\ \Rightarrow 2\sqrt x = 2\\ \Rightarrow \sqrt x = 1\\ \Rightarrow x = 1\left( {tmdk} \right)\\Vậy\,x = 1\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
a)DKxd:x \ge 0;x \ne 4\\
P = \dfrac{{\sqrt x + 1}}{{\sqrt x – 2}} + \dfrac{{2\sqrt x }}{{\sqrt x + 2}} + \dfrac{{2 + 5\sqrt x }}{{4 – x}}\\
= \dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x + 2} \right) + 2\sqrt x \left( {\sqrt x – 2} \right) – 2 – 5\sqrt x }}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{x + 3\sqrt x + 2 + 2x – 4\sqrt x – 2 – 5\sqrt x }}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{3x – 6\sqrt x }}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{3\sqrt x \left( {\sqrt x – 2} \right)}}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{3\sqrt x }}{{\sqrt x + 2}}\\
b)P = 1\\
\Rightarrow \dfrac{{3\sqrt x }}{{\sqrt x + 2}} = 1\\
\Rightarrow 3\sqrt x = \sqrt x + 2\\
\Rightarrow 2\sqrt x = 2\\
\Rightarrow \sqrt x = 1\\
\Rightarrow x = 1\left( {tmdk} \right)\\
Vậy\,x = 1
\end{array}$