P=(x+2)/(x+3)-5/(x^2+x-6)+1/(2-x) a) tìm x để P=-3/4 b)tìm các gtrị x để P nguyên c) tính P khi x^2-9=0 07/08/2021 Bởi Amaya P=(x+2)/(x+3)-5/(x^2+x-6)+1/(2-x) a) tìm x để P=-3/4 b)tìm các gtrị x để P nguyên c) tính P khi x^2-9=0
Đáp án: a)x=$\frac{22}{7}$ b)x∈{0;1;3;4} c)Khi x=3 thì P=-1 Giải thích các bước giải: \(\begin{array}{l} P = \frac{{x + 2}}{{x + 3}} – \frac{5}{{x^2 + x – 6}} + \frac{1}{{2 – x}} \\ Đk:x \ne – 3;x \ne 2 \\ P = \frac{{x + 2}}{{x + 3}} – \frac{5}{{(x – 2)(x + 3)}} – \frac{1}{{x – 2}} \\ = \frac{{(x + 2)(x – 2)}}{{(x + 3)(x – 2)}} – \frac{5}{{(x – 2)(x + 3)}} – \frac{{x + 3}}{{(x – 2)(x + 3)}} \\ = \frac{{x^2 – 4 – 5 – x – 3}}{{(x – 2)(x + 3)}} \\ = \frac{{x^2 – x – 12}}{{(x – 2)(x + 3)}} \\ = \frac{{(x – 4)(x + 3)}}{{(x – 2)(x + 3)}} \\ = \frac{{x – 4}}{{x – 2}} \\ a)P = \frac{{ – 3}}{4} \Leftrightarrow \frac{{x – 4}}{{x – 2}} = \frac{{ – 3}}{4}(x \ne – 3;x \ne 2) \\ \Leftrightarrow 4x – 16 = – 3x + 6 \\ \Leftrightarrow 7x = 22 \\ \Leftrightarrow x = \frac{{22}}{7} \\ b)P = \frac{{x – 4}}{{x – 2}} = \frac{{x – 2 – 2}}{{x – 2}} = 1 – \frac{2}{{x – 2}}(x \ne – 3;x \ne 2) \\ P \in Z \Leftrightarrow \frac{2}{{x – 2}} \in Z \Leftrightarrow x – 2 \in Ư(2) = {\rm{\{ }} \pm {\rm{1;}} \pm {\rm{2\} }} \\ {\rm{ = > x}} \in {\rm{\{ 0;1;3;4\} ™}} \\ {\rm{c)P = }}\frac{{{\rm{x – 4}}}}{{{\rm{x – 2}}}}(x \ne – 3;x \ne 2) \\ {\rm{x}}^{\rm{2}} – 9 = 0 \\ \Leftrightarrow \left[ {\begin{array}{*{20}c} {x = 3(tm)} \\ {x = – 3(ktm)} \\\end{array}} \right. \\ + )x = 3 = > P = \frac{{3 – 4}}{{3 – 2}} = – 1 \\ \end{array}\) Bình luận
Đáp án:
a)x=$\frac{22}{7}$
b)x∈{0;1;3;4}
c)Khi x=3 thì P=-1
Giải thích các bước giải:
\(
\begin{array}{l}
P = \frac{{x + 2}}{{x + 3}} – \frac{5}{{x^2 + x – 6}} + \frac{1}{{2 – x}} \\
Đk:x \ne – 3;x \ne 2 \\
P = \frac{{x + 2}}{{x + 3}} – \frac{5}{{(x – 2)(x + 3)}} – \frac{1}{{x – 2}} \\
= \frac{{(x + 2)(x – 2)}}{{(x + 3)(x – 2)}} – \frac{5}{{(x – 2)(x + 3)}} – \frac{{x + 3}}{{(x – 2)(x + 3)}} \\
= \frac{{x^2 – 4 – 5 – x – 3}}{{(x – 2)(x + 3)}} \\
= \frac{{x^2 – x – 12}}{{(x – 2)(x + 3)}} \\
= \frac{{(x – 4)(x + 3)}}{{(x – 2)(x + 3)}} \\
= \frac{{x – 4}}{{x – 2}} \\
a)P = \frac{{ – 3}}{4} \Leftrightarrow \frac{{x – 4}}{{x – 2}} = \frac{{ – 3}}{4}(x \ne – 3;x \ne 2) \\
\Leftrightarrow 4x – 16 = – 3x + 6 \\
\Leftrightarrow 7x = 22 \\
\Leftrightarrow x = \frac{{22}}{7} \\
b)P = \frac{{x – 4}}{{x – 2}} = \frac{{x – 2 – 2}}{{x – 2}} = 1 – \frac{2}{{x – 2}}(x \ne – 3;x \ne 2) \\
P \in Z \Leftrightarrow \frac{2}{{x – 2}} \in Z \Leftrightarrow x – 2 \in Ư(2) = {\rm{\{ }} \pm {\rm{1;}} \pm {\rm{2\} }} \\
{\rm{ = > x}} \in {\rm{\{ 0;1;3;4\} ™}} \\
{\rm{c)P = }}\frac{{{\rm{x – 4}}}}{{{\rm{x – 2}}}}(x \ne – 3;x \ne 2) \\
{\rm{x}}^{\rm{2}} – 9 = 0 \\
\Leftrightarrow \left[ {\begin{array}{*{20}c}
{x = 3(tm)} \\
{x = – 3(ktm)} \\
\end{array}} \right. \\
+ )x = 3 = > P = \frac{{3 – 4}}{{3 – 2}} = – 1 \\
\end{array}
\)