P(x)=x^5+7x^4-9x^3-2x^2-1/4x Q(x)=-x^5+5x^4-2x^3+4x^2-1/4 tính P(x) – Q(x) 07/08/2021 Bởi Allison P(x)=x^5+7x^4-9x^3-2x^2-1/4x Q(x)=-x^5+5x^4-2x^3+4x^2-1/4 tính P(x) – Q(x)
P(x) = $x^{5}$+ $7x^{4}$ – $9x^{3}$ – $2x^{2}$ – $\frac{1}{4}x$ – Q(x) = $-x^{5}$+ $5x^{4}$ – $2x^{3}$ +$4x^{2}$ – $\frac{1}{4}$ ______________________________________________________________________ P(x) – Q(x) = $2x^{5}$+ $2x^{4}$ – $7x^{3}$ – $\frac{6x}{2}$ – $\frac{1}{4}x$ + $\frac{1}{4}$ Bình luận
`P(x) – Q(x) = (x^5 + 7x^4- 9x^3 – 2x^2 – 1/4 x) – (-x^5 + 5x^4 – 2x^3 + 4x^2 – 1/4)` `P(x) – Q(x) = x^5 + 7x^4 – 9x^3 – 2x^2 – 1/4x + x^5 – 5x^4 + 2x^3 – 4x^2 + 1/4` `P(x) – Q(x) = (x^5 + x^5) + (7x^4 – 5x^4) – (9x^3 – 2x^3) – (2x^2 + 4x^2) – 1/4 x + 1/4` `P(x) – Q(x) =2x^5 + 2x^4 – 7x^3 – 6x^2 – 1/4 x + 1/4` Bình luận
P(x) = $x^{5}$+ $7x^{4}$ – $9x^{3}$ – $2x^{2}$ – $\frac{1}{4}x$
–
Q(x) = $-x^{5}$+ $5x^{4}$ – $2x^{3}$ +$4x^{2}$ – $\frac{1}{4}$
______________________________________________________________________
P(x) – Q(x) = $2x^{5}$+ $2x^{4}$ – $7x^{3}$ – $\frac{6x}{2}$ – $\frac{1}{4}x$ + $\frac{1}{4}$
`P(x) – Q(x) = (x^5 + 7x^4- 9x^3 – 2x^2 – 1/4 x) – (-x^5 + 5x^4 – 2x^3 + 4x^2 – 1/4)`
`P(x) – Q(x) = x^5 + 7x^4 – 9x^3 – 2x^2 – 1/4x + x^5 – 5x^4 + 2x^3 – 4x^2 + 1/4`
`P(x) – Q(x) = (x^5 + x^5) + (7x^4 – 5x^4) – (9x^3 – 2x^3) – (2x^2 + 4x^2) – 1/4 x + 1/4`
`P(x) – Q(x) =2x^5 + 2x^4 – 7x^3 – 6x^2 – 1/4 x + 1/4`