P= $\frac{1}{100}$ – $\frac{1}{100×99}$ – $\frac{1}{99×98}$ – … – $\frac{1}{3×2}$ – $\frac{1}{2×1}$

P= $\frac{1}{100}$ – $\frac{1}{100×99}$ – $\frac{1}{99×98}$ – … – $\frac{1}{3×2}$ – $\frac{1}{2×1}$

0 bình luận về “P= $\frac{1}{100}$ – $\frac{1}{100×99}$ – $\frac{1}{99×98}$ – … – $\frac{1}{3×2}$ – $\frac{1}{2×1}$”

  1. `P = 1/100 – 1/(100.99) – 1/(99.98) – …..- 1/(3.2) – 1/(2.1)`

    `= 1/100 – (1/(100.99) + 1/(99.98)+ …..- 1/(3.2)+ 1/(2.1))`

    `= 1/100 – (1/(1.2) + 1/(2.3) + ….+ 1/(98.99) + 1/(99.100))`

    `= 1/100 – (1 – 1/2 + 1/2 – 1/3+….+1/98-1/99+1/99-1/100)`

    `= 1/100 – (1 – 1/100) `

    `= 1/100 – 99/100`

    `= -98/100`

    `= -49/50`

    (Chúc bạn học tốt)

     

    Bình luận
  2. `P = 1/100 – 1/(100.99) – 1/(99.98) – … – 1/(3.2) – 1/(2.1)`

    `P = 1/100 – (1/(100.99) + 1/(99.98) + …. + 1/(3.2) + 1/(2.1))`

    Đặt:

    `A = 1/(100.99) + 1/(99.98) + …. + 1/(3.2) + 1/(2.1)`

    `A = 1/(1.2) + 1/(2.3) + …. + 1/(98.99) + 1/(99.100)`

    `A = 1 – 1/2 + 1/2 – 1/3 + 1/3 – …. + 1/99 – 1/100`

    `A = 1 – 1/100`

    `A = 99/100`

    `=> P = 1/100 – (1/(100.99) + 1/(99.98) + …. + 1/(3.2) + 1/(2.1))`

    `P = 1/100 – 99/100`

    `P = (-49)/50`

    Bình luận

Viết một bình luận