phân tích đa thức thành nhân tử: x^3-2x^2+2x-1 20x^2-5y^2+10y-5 4y^2+2xy^2-xy-1 04/09/2021 Bởi Sadie phân tích đa thức thành nhân tử: x^3-2x^2+2x-1 20x^2-5y^2+10y-5 4y^2+2xy^2-xy-1
Đáp án: $\begin{array}{l}a){x^3} – 2{x^2} + 2x – 1 = {x^3} – 2{x^2} + x + x – 1\\ = x\left( {{x^2} – 2x + 1} \right) + \left( {x – 1} \right)\\ = x{\left( {x – 1} \right)^2} + \left( {x – 1} \right)\\ = \left( {x – 1} \right)\left( {x\left( {x – 1} \right) + 1} \right)\\ = \left( {x – 1} \right)\left( {{x^2} – x + 1} \right)\\b)20{x^2} – 5{y^2} + 10y – 5\\ = 5\left( {4{x^2} – {y^2} + 2y – 1} \right)\\ = 5\left[ {{{\left( {2x} \right)}^2} – \left( {{y^2} – 2y + 1} \right)} \right]\\ = 5\left[ {{{\left( {2x} \right)}^2} – {{\left( {y – 1} \right)}^2}} \right]\\ = 5\left( {2x – y + 1} \right)\left( {2x + y – 1} \right)\end{array}$ c) \begin{array}{l}4{y^2} + 2x{y^2} – xy – 1\\ = \left( {4{y^2} – 1} \right) + \left( {2x{y^2} – xy} \right)\\ = \left( {2y – 1} \right)\left( {2y + 1} \right) + xy\left( {2y – 1} \right)\\ = \left( {2y – 1} \right)\left( {2y + 1 + xy} \right)\end{array} Bình luận
x^3-2x^2+2x-1 = x( x^2 -2x + 2) -1 =x( x-1)^2 +1 -1 = x(x-1)^2 20x^2-5y^2+10y-5 = 5( 4x^2- y^2+ 2y- 1) = 5[ 4x^2- (y-1)^2] = 5( 2x- y+ 1)( 2x+ y- 1) 4y^2+2xy^2-xy-1 = (2y -1)(2y+1) + xy(2y – 1) = (2y-1)(2y+1 + xy) Bình luận
Đáp án:
$\begin{array}{l}
a){x^3} – 2{x^2} + 2x – 1 = {x^3} – 2{x^2} + x + x – 1\\
= x\left( {{x^2} – 2x + 1} \right) + \left( {x – 1} \right)\\
= x{\left( {x – 1} \right)^2} + \left( {x – 1} \right)\\
= \left( {x – 1} \right)\left( {x\left( {x – 1} \right) + 1} \right)\\
= \left( {x – 1} \right)\left( {{x^2} – x + 1} \right)\\
b)20{x^2} – 5{y^2} + 10y – 5\\
= 5\left( {4{x^2} – {y^2} + 2y – 1} \right)\\
= 5\left[ {{{\left( {2x} \right)}^2} – \left( {{y^2} – 2y + 1} \right)} \right]\\
= 5\left[ {{{\left( {2x} \right)}^2} – {{\left( {y – 1} \right)}^2}} \right]\\
= 5\left( {2x – y + 1} \right)\left( {2x + y – 1} \right)
\end{array}$
c)
\begin{array}{l}
4{y^2} + 2x{y^2} – xy – 1\\
= \left( {4{y^2} – 1} \right) + \left( {2x{y^2} – xy} \right)\\
= \left( {2y – 1} \right)\left( {2y + 1} \right) + xy\left( {2y – 1} \right)\\
= \left( {2y – 1} \right)\left( {2y + 1 + xy} \right)
\end{array}
x^3-2x^2+2x-1 = x( x^2 -2x + 2) -1
=x( x-1)^2 +1 -1
= x(x-1)^2
20x^2-5y^2+10y-5 = 5( 4x^2- y^2+ 2y- 1)
= 5[ 4x^2- (y-1)^2]
= 5( 2x- y+ 1)( 2x+ y- 1)
4y^2+2xy^2-xy-1 = (2y -1)(2y+1) + xy(2y – 1)
= (2y-1)(2y+1 + xy)