Quãng đường AB dài 200km, cùng 1 lúc 1 xe tải khởi hành đi từ A đến B và 1 xe con đi từ B đến A. Sau khi 2 xe gặp nhau xe tải phải đi thêm 3 giờ nữa m

Quãng đường AB dài 200km, cùng 1 lúc 1 xe tải khởi hành đi từ A đến B và 1 xe con đi từ B đến A. Sau khi 2 xe gặp nhau xe tải phải đi thêm 3 giờ nữa mới đến B. Biết vận tốc xe tải kém vẫn tốc xe ô tô 20km/h. Tính vận tốc mỗi xe

0 bình luận về “Quãng đường AB dài 200km, cùng 1 lúc 1 xe tải khởi hành đi từ A đến B và 1 xe con đi từ B đến A. Sau khi 2 xe gặp nhau xe tải phải đi thêm 3 giờ nữa m”

  1. Đáp án:

     

    Giải thích các bước giải:

    Gọi vận tốc của xe tải là $x$ ( $km$ / $h$ ) ( $x$ $>$ $0$ )
    → Vận tốc của xe con là $x$ $+$ $20$ ( $km$ / $h$ )
     Thời gian $2$ xe gặp nhau là : $200$ $÷$ ( $x$ $+$ $x$ $+$ $20$ ) $=$ $100$ $÷$ ( $x$ $+$ $10$ ) ( giờ )
    Quãng đường xe tải đi đến lúc gặp nhau là : $100x$ $÷$ ( $x$ $+$ $10$ ) ( km )
    Quãng đường xe tải đi từ lúc gặp nhau đến lúc đến B là : $3x$ (km)
    => Ta có PT:
          $100x$ $÷$ ( $x$ $+$ $10$ ) $+$ $3x$ $=$ $200$
    Giải PT trên ta được : $x$ $=$ $40$ (TM)
    Vậy Vận tốc xe tải là $40$ km/h
    => Vận tốc xe con là: $40$ $+$ $20$ $=$ $60$ km/h

                                                                  Đáp số : xe tải : $40$ km/h

                                                                                xe con : $60$ km/h.

    Bình luận
  2. TL:

    Gọi vận tốc xe 1 là $x ( x < 0 )$ 

    Do vận tốc xe tải lớn hơn vận tốc xe ô tô là km/h ⇔ vận tốc xe tải là $x + 20$ 

    Thời gian 2 xe gặp nhau là: $100 : ( x + 10 )$ 

    Quãng đường xe tải từ lúc gặp nhau đến đến điểm B là: $3x ( km )$ 

    Theo đề bài, ta có p/t: 

    $100x : ( x + 20 ) + 3x = 200 $ 

    $=> x = 40 ( t/m )$ 

    Ta có: Vận tốc xe con là: $40 + 20 = 60 (km/h )$ 

    Vậy vận tốc xe tải và xe con lần lượt là 40 km/h và 60 km/h

    Bình luận

Viết một bình luận