xác định a để đa thức x^3+x^2+a-x chia hết cho (x+1)^2

Question

xác định a để đa thức
x^3+x^2+a-x chia hết cho (x+1)^2

in progress 0
Sadie 1 tháng 2021-07-29T04:07:47+00:00 2 Answers 4 views 0

Answers ( )

    0
    2021-07-29T04:08:47+00:00

    x³ +x² +a -x chia hết cho (x+1)²

    Vậy x³ +x² +a -x = (x-1)(x+1)² +a +1

    Để x³ +x² +a -x chia hết cho (x+1)² thì a+1 =0; mọi a

                                                                ⇒ a = -1

    Vậy a=-1 thì x³ +x² +a -x chia hết cho (x+1)²

              Chúc bạn học tốt ^^

    0
    2021-07-29T04:08:50+00:00

    Đáp án:

     a=-1

    Giải thích các bước giải:

     Lấy x^3+x^2-x+ a chia cho x^2+2x+1

    được số dư là a+1

    Để phép chia là phép chia ht thì số dư phải là 0<=> a+1=0<=>a=-1

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )