Bài 1: Cho hai hàm số `y=x^2` có đồ thị `(P)` và `y=2mx-m+2` có đồ thị là đường thẳng `(d_m)` a) Chứng minh rằng đường thẳng `(d_m)` cắt `(P)` tại 2 đ

Question

Bài 1: Cho hai hàm số `y=x^2` có đồ thị `(P)` và `y=2mx-m+2` có đồ thị là đường thẳng `(d_m)`
a) Chứng minh rằng đường thẳng `(d_m)` cắt `(P)` tại 2 điểm phân biệt với mọi giá trị của `m`
`b)` Gọi `x_1;x_2` lần lượt là hoành độ các giao điểm của đường thẳng `(d_m)` và `(P)`. Tìm giá trị của tham số `m` để biểu thức `M=frac{-24}{x_1^2+x_2^2-6x_1x_2}` đạt GTNN.

in progress 0
Alice 2 tháng 2021-09-28T14:56:38+00:00 1 Answers 13 views 0

Answers ( )

    0
    2021-09-28T14:57:48+00:00

    a,

    Xét phương trình hoành độ giao điểm của `(P)` và `(d_m)`:

    `x^2=2mx-m+2`

    `<=>x^2-2mx+m-2=0`

    `Δ’=(-m)^2-(m-2)=m^2-m+2>0` với `∀\ m \in RR`

    `=>(d_m)` luôn cắt `(P)` tại hai điểm phân biệt với mọi `m`

    b,

    Theo hệ thức vi-ét, ta có: $\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}$

    Ta có:

    `M={-24}/{x_1^2+x_2^2-6x_1x_2}`

    `={-24}/{(x_1+x_2)^2-8x_1x_2}`

    `={-24}/{(2m)^2-8(m-2)}`

    `={-24}/{4m^2-8m+16}`

    `={-24}/{4m^2-8m+4+12}`

    `={-24}/{4(m-1)^2+12}`

    Ta có:

    `4(m-1)^2>=0` với `∀\ m\inRR`

    `=>4(m-1)^2+12>=12` với `∀\ m\inRR`

    `=>24/{4(m-1)^2+12}<=2`

    `=>M={-24}/{4(m-1)^2+12}>=-2`

    Dấu `=` xảy ra `<=>m-1=0`

    `<=>m=1`

    Vậy `M_{min}=-2<=>m=1` 

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )