Cho pt : x^2-(3m+1)x+2m^2+m-1 =0 (1) A,CMR pt 1 luôn có 2 nghiệm phân biệt với V giá trị của M B, Gọi x1 x2 là các nghiệm của phương trình 1 .Tìm m để

Question

Cho pt : x^2-(3m+1)x+2m^2+m-1 =0 (1)
A,CMR pt 1 luôn có 2 nghiệm phân biệt với V giá trị của M
B, Gọi x1 x2 là các nghiệm của phương trình 1 .Tìm m để bt :
B=x1^2+x2^2-3x1x2 đạt giá trị lớn nhất

in progress 0
Alaia 2 ngày 2021-12-07T18:01:26+00:00 2 Answers 1 views 0

Answers ( )

    0
    2021-12-07T18:02:26+00:00

    Đáp án: m = $\frac{1}{2}$ 

     

    Giải thích các bước giải:

    a) Pt có 2 nghiệm phân biệt ∀ m khi :

    Δ > 0 ⇔ ( – ( 3 m + 1 ) )² – 4 ( 2m² + m – 1 ) > 0

    ⇔ Δ = 9m² – 6m + 1 – 8m² – 4m + 4

    = m² – 10m + 5

    = m ( m – 10 ) + 5 ≥ 0 ∀ m

    b) Theo Vi-et có : 

    $\left \{ {{x_{1}x_{2} = \frac{2m^{2} + m – 1 }{1} = 2m^{2} + m -1 } \atop {x_{1} + x_{2} = \frac{3m + 1}{1} = 3m + 1 }} \right.$

    Ta có : A = x1² + x2² – 3x1x2 = ( x1 + x2 )² – 5x1x2

    A ⇔ ( 3m + 1 )² – 5 ( 2m² + m – 1 )

    ⇔ 9m² + 6m + 1 – 10m² – 5m + 5

    ⇔ -m² + m + 6

    ⇔ – ( m² – m – 6 )

    ⇔ – ( ( m – $\frac{1}{2}$ )$^{2}$ – $\frac{1}{4}$ – 6 )

    ⇔ – ( m – $\frac{1}{2}$ )$^{2}$ + $\frac{25}{4}$ 

    Biểu thức đạt GTLN khi – ( m – $\frac{1}{2}$ )$^{2}$ = 0 ⇔ m = $\frac{1}{2}$ 

    Vậy biểu thức đạt GTLN = $\frac{25}{4}$ khi m = $\frac{1}{2}$ 

    0
    2021-12-07T18:02:49+00:00

    Đáp án: m=1/2

     

    Giải thích các bước giải:

    a) Pt có 2 nghiệm phân biệt ∀ m khi :

    Δ > 0 ⇔ ( – ( 3 m + 1 ) )² – 4 ( 2m² + m – 1 ) > 0

    ⇔ Δ = 9m² – 6m + 1 – 8m² – 4m + 4

    = m² – 10m + 5

    = m ( m – 10 ) + 5 ≥ 0 ∀ m

    b) Theo Vi-et có : 

    x1+x2=3m+1

    Ta có : A = x1² + x2² – 3x1x2 = ( x1 + x2 )² – 5x1x2

     ⇔ ( 3m + 1 )² – 5 ( 2m² + m – 1 )

    ⇔ 9m² + 6m + 1 – 10m² – 5m + 5

    ⇔ -m² + m + 6

    ⇔ – ( m² – m – 6 )

    ⇔ – ( ( m -1/2)^2-1/4-6

    ⇔ – ( m – 1/2)^2+25/4

    Biểu thức đạt GTLN khi – ( m –  = 0 ⇔ m =  

    Vậy biểu thức đạt GTLN = 2khi m = 

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )