giải giúp mình caau này với: log2(2x)*log3(3x)<1

Question

giải giúp mình caau này với: log2(2x)*log3(3x)<1

in progress 0
Margaret 3 tuần 2021-08-21T17:10:28+00:00 1 Answers 0 views 0

Answers ( )

    0
    2021-08-21T17:11:59+00:00

    Đáp án:

    $x\in\{1,\dfrac{1}{6}\}$ 

    Giải thích các bước giải:

     $\log_22x.\log_33x=1$

    $\rightarrow \dfrac{\log_32x}{\log_32}.\log_33x=1$

    $\rightarrow \dfrac{\log_3x+\log_32}{\log_32}.(\log_3x+\log_33)=1$

    $\rightarrow \dfrac{\log_3x+\log_32}{\log_32}.(\log_3x+1)=1$

    Đặt $\log_3x=t$

    $\rightarrow \dfrac{(log_32+t)(1+t)}{\log_32}=1$

    $\rightarrow t^2+(log_32+1)t=0$

    $+)t=0\rightarrow \log_3x=0\rightarrow x=1$

    $+)t=-log_32-1\rightarrow x=3^{-log_23-1}=\dfrac{1}{6}$

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )