Mỗi hàm số sau là hàm số chẵn hay hàm số lẻ: a) y = x4 – 3x^2 + 1; b) y = -2x^3 + x ; c) y = | x + 2| – | x – 2|; d) y = |2x + 1| + |2x – 1|;

Question

Mỗi hàm số sau là hàm số chẵn hay hàm số lẻ:
a) y = x4 – 3x^2 + 1;
b) y = -2x^3 + x ;
c) y = | x + 2| – | x – 2|;
d) y = |2x + 1| + |2x – 1|;

in progress 0
Adeline 18 phút 2021-09-16T18:18:41+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-09-16T18:19:42+00:00

    Đáp án:

    a) Hàm số y = f(x) = $x^{4}$ – 3$x^{2}$ + 1 có tập xác định D là R, do đó ∀ x ∈ D thì -x ∈ D, hơn nữa f(-x) = $(-x)^{4}$ – 3$(-x)^{2}$ + 1 = $x^{4}$ – 3$x^{2}$ + 1 = f(x), nên y = f(x) là hàm số chẵn.

    b) Hàm số y = g(x) = -2$x^{3}$ + x có tập xác định D là R, do đó ∀ x ∈ D thì -x ∈ D, hơn nữa g(-x) = -2$(-x)^{3}$ + (-x) = 2$x^{3}$ – x = -g(x), nên y = g(x) là hàm số lẻ.

    c) Hàm số y = h(x) =|x + 2|- |x – 2 | có tập xác định D là R, do đó ∀ x ∈ D thì –x ∈ D, hơn nữa h(-x) = | -x + 2| -|-x – 2|= |x – 2| – |x + 2|= -(|x + 2| – |x – 2 |) = -h{x)

    Vì vậy y = h(x) là hàm số lẻ.

    d) Chứng minh tương tự ta có y = |2x + 1| + |2x — 1| là hàm số chẵn.

    0
    2021-09-16T18:20:35+00:00

    a/ TXĐ: $D=\mathbb R$

    Gọi $f(x)=x^4-3x^2+1$

    Xét $f(-x)=(-x)^4-3(-x)^2+1=x^4-3x^2+1=f(x)$

    $→f(x)$ là hàm số chẵn

    b/ TXĐ: $D=\mathbb R$

    Gọi $f(x)=-2x^3+x$

    Xét $f(-x)=-2(-x)^3+(-x)=2x^3-x=-(2x^3+x)=-f(x)$

    $→f(x)$ là hàm số lẻ

    c/ TXĐ: $D=\mathbb R$

    Gọi $f(x)=|x+2|-|x-2|$

    Xét $f(-x)=|-x+2|-|-x-2|=|x-2|-|x+2|=-(|x+2|-|x-2|)=-f(x)$

    $→f(x)$ là hàm số lẻ

    d/ TXĐ: $D=\mathbb R$

    Gọi $f(x)=|2x+1|+|2x-1|$

    Xét $f(-x)=|-2x+1|+|-2x-1|=|2x-1|+|2x+1|=f(x)$

    $→f(x)$ là hàm số chẵn

     

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )