Rút gọn A=[1+cos(x/2)-sin(x/2)]/[1-cos(x/2)-sin(x/2)] 23/07/2021 Bởi Caroline Rút gọn A=[1+cos(x/2)-sin(x/2)]/[1-cos(x/2)-sin(x/2)]
Đáp án: $A = – \cot \left( {\dfrac{x}{4}} \right)$ Giải thích các bước giải: $\begin{array}{l}A = \dfrac{{1 + \cos \left( {\dfrac{x}{2}} \right) – \sin \left( {\dfrac{x}{2}} \right)}}{{1 – \cos \left( {\dfrac{x}{2}} \right) – \sin \left( {\dfrac{x}{2}} \right)}}\\ = \dfrac{{2{{\cos }^2}\left( {\dfrac{x}{4}} \right) – 2\sin \left( {\dfrac{x}{4}} \right)\cos \left( {\dfrac{x}{4}} \right)}}{{2{{\sin }^2}\left( {\dfrac{x}{4}} \right) – 2\sin \left( {\dfrac{x}{4}} \right)\cos \left( {\dfrac{x}{4}} \right)}}\\ = \dfrac{{2\cos \left( {\dfrac{x}{4}} \right)\left( {\cos \left( {\dfrac{x}{4}} \right) – \sin \left( {\dfrac{x}{4}} \right)} \right)}}{{2\sin \left( {\dfrac{x}{4}} \right)\left( {\sin \left( {\dfrac{x}{4}} \right) – \cos \left( {\dfrac{x}{4}} \right)} \right)}}\\ = – \dfrac{{\cos \left( {\dfrac{x}{4}} \right)}}{{\sin \left( {\dfrac{x}{4}} \right)}}\\ = – \cot \left( {\dfrac{x}{4}} \right)\end{array}$ Bình luận
Đáp án:
$A = – \cot \left( {\dfrac{x}{4}} \right)$
Giải thích các bước giải:
$\begin{array}{l}
A = \dfrac{{1 + \cos \left( {\dfrac{x}{2}} \right) – \sin \left( {\dfrac{x}{2}} \right)}}{{1 – \cos \left( {\dfrac{x}{2}} \right) – \sin \left( {\dfrac{x}{2}} \right)}}\\
= \dfrac{{2{{\cos }^2}\left( {\dfrac{x}{4}} \right) – 2\sin \left( {\dfrac{x}{4}} \right)\cos \left( {\dfrac{x}{4}} \right)}}{{2{{\sin }^2}\left( {\dfrac{x}{4}} \right) – 2\sin \left( {\dfrac{x}{4}} \right)\cos \left( {\dfrac{x}{4}} \right)}}\\
= \dfrac{{2\cos \left( {\dfrac{x}{4}} \right)\left( {\cos \left( {\dfrac{x}{4}} \right) – \sin \left( {\dfrac{x}{4}} \right)} \right)}}{{2\sin \left( {\dfrac{x}{4}} \right)\left( {\sin \left( {\dfrac{x}{4}} \right) – \cos \left( {\dfrac{x}{4}} \right)} \right)}}\\
= – \dfrac{{\cos \left( {\dfrac{x}{4}} \right)}}{{\sin \left( {\dfrac{x}{4}} \right)}}\\
= – \cot \left( {\dfrac{x}{4}} \right)
\end{array}$