Rút gọn a,-2x(x-3) ²+(x+2)(x-1)(x+1) b, (x-5)(x+5)(x-2)-(x-1)(x+2) ² c, (4x-1)(x-1)-4x(x+5) 24/07/2021 Bởi Rylee Rút gọn a,-2x(x-3) ²+(x+2)(x-1)(x+1) b, (x-5)(x+5)(x-2)-(x-1)(x+2) ² c, (4x-1)(x-1)-4x(x+5)
a , -2x ( x – 3 )² + ( x + 2 ) ( x – 1 )( x + 1 ) = -2x ( x² – 6x + 9 ) + ( x – 2 ) ( x² – 1 ) = -2x³ + 12x² – 18x + x³ – x – 2x² + 2 = -x³ + 10x² – 19x + 2 b , ( x – 5 ) ( x + 5 )( x – 2 ) – ( x – 1 ) ( x + 2 )² = ( x² – 25 ) ( x – 2 ) – ( x – 1 ) ( x² + 4x + 4 ) = x³ – 2x² – 25x + 50 – x³ – 4x² – 4x + x² + 4x + 4 = -5x² – 25x + 54 c , ( 4x – 1 ) ( x – 1 ) – 4x ( x + 5 ) = 4x² – 4x – x +1 – 4x² – 20x = -25x + 1 chúc em học tốt #anhduongtruong #iloveyouBLACKPINK Bình luận
`a , -2x ( x – 3 )² + ( x + 2 ) ( x – 1 )( x + 1 )` `= -2x ( x² – 6x + 9 ) + ( x – 2 ) ( x² – 1 )` `= -2x³ + 12x² – 18x + x³ – x – 2x² + 2` `= -x³ + 10x² – 19x + 2` `b , ( x – 5 ) ( x + 5 )( x – 2 ) – ( x – 1 ) ( x + 2 )²` `= ( x² – 25 ) ( x – 2 ) – ( x – 1 ) ( x² + 4x + 4 )` `= x³ – 2x² – 25x + 50 – x³ – 4x² – 4x + x² + 4x + 4` `= -5x² – 25x + 54` `c , ( 4x – 1 ) ( x – 1 ) – 4x ( x + 5 )` `= 4x² – 4x – x +1 – 4x² – 20x` `= -25x + 1` Xin hay nhất ! Bình luận
a , -2x ( x – 3 )² + ( x + 2 ) ( x – 1 )( x + 1 )
= -2x ( x² – 6x + 9 ) + ( x – 2 ) ( x² – 1 )
= -2x³ + 12x² – 18x + x³ – x – 2x² + 2
= -x³ + 10x² – 19x + 2
b , ( x – 5 ) ( x + 5 )( x – 2 ) – ( x – 1 ) ( x + 2 )²
= ( x² – 25 ) ( x – 2 ) – ( x – 1 ) ( x² + 4x + 4 )
= x³ – 2x² – 25x + 50 – x³ – 4x² – 4x + x² + 4x + 4
= -5x² – 25x + 54
c , ( 4x – 1 ) ( x – 1 ) – 4x ( x + 5 )
= 4x² – 4x – x +1 – 4x² – 20x
= -25x + 1
chúc em học tốt
#anhduongtruong
#iloveyouBLACKPINK
`a , -2x ( x – 3 )² + ( x + 2 ) ( x – 1 )( x + 1 )`
`= -2x ( x² – 6x + 9 ) + ( x – 2 ) ( x² – 1 )`
`= -2x³ + 12x² – 18x + x³ – x – 2x² + 2`
`= -x³ + 10x² – 19x + 2`
`b , ( x – 5 ) ( x + 5 )( x – 2 ) – ( x – 1 ) ( x + 2 )²`
`= ( x² – 25 ) ( x – 2 ) – ( x – 1 ) ( x² + 4x + 4 )`
`= x³ – 2x² – 25x + 50 – x³ – 4x² – 4x + x² + 4x + 4`
`= -5x² – 25x + 54`
`c , ( 4x – 1 ) ( x – 1 ) – 4x ( x + 5 )`
`= 4x² – 4x – x +1 – 4x² – 20x`
`= -25x + 1`
Xin hay nhất !