Rút gọn biểu thức B = ($\frac{6}{a – 1}$ + $\frac{10 – 2\sqrt[]{x}}{a\sqrt[]{a} – a – \sqrt[]{a} + 1}$) . $\frac{(\sqrt[]{a} – 1)^{2}}{4\sqrt[]{a}}$
Rút gọn biểu thức B = ($\frac{6}{a – 1}$ + $\frac{10 – 2\sqrt[]{x}}{a\sqrt[]{a} – a – \sqrt[]{a} + 1}$) . $\frac{(\sqrt[]{a} – 1)^{2}}{4\sqrt[]{a}}$
Đáp án:
$\begin{array}{l}
B = \left( {\dfrac{6}{{a – 1}} + \dfrac{{10 – 2\sqrt a }}{{a\sqrt a – a – \sqrt a + 1}}} \right).\dfrac{{{{\left( {\sqrt a – 1} \right)}^2}}}{{4\sqrt a }}\\
= \left( {\dfrac{6}{{a – 1}} + \dfrac{{10 – 2\sqrt a }}{{\left( {a – 1} \right)\left( {\sqrt a – 1} \right)}}} \right).\dfrac{{{{\left( {\sqrt a – 1} \right)}^2}}}{{4\sqrt a }}\\
= \dfrac{{6\left( {\sqrt a – 1} \right) + 10 – 2\sqrt a }}{{\left( {\sqrt a – 1} \right)\left( {a – 1} \right)}}.\dfrac{{{{\left( {\sqrt a – 1} \right)}^2}}}{{4\sqrt a }}\\
= \dfrac{{4\sqrt a + 4}}{{a – 1}}.\dfrac{{\left( {\sqrt a – 1} \right)}}{{4\sqrt a }}\\
= \dfrac{{4\left( {\sqrt a + 1} \right)\left( {\sqrt a – 1} \right)}}{{\left( {\sqrt a – 1} \right)\left( {\sqrt a + 1} \right).4\sqrt a }}\\
= \dfrac{1}{{\sqrt a }}
\end{array}$