Rút gọn các biểu thức sau 1)A=(x^2-1)(x-2)-(x-2)(x^2+2x+4) 2)(x+3)(x+3)-(x+3)^2 19/08/2021 Bởi Rylee Rút gọn các biểu thức sau 1)A=(x^2-1)(x-2)-(x-2)(x^2+2x+4) 2)(x+3)(x+3)-(x+3)^2
$\begin{array}{l}1)\,\,A = \left( {{x^2} – 1} \right)\left( {x – 2} \right) – \left( {x – 2} \right)\left( {{x^2} + 2x + 4} \right)\\A = \left( {x – 2} \right)\left[ {\left( {{x^2} – 1} \right) – \left( {{x^2} + 2x + 4} \right)} \right]\\A = \left( {x – 2} \right)\left( {{x^2} – 1 – {x^2} – 2x – 4} \right)\\A = \left( {x – 2} \right)\left( { – 2x – 5} \right)\\A = – 2{x^2} – 5x + 4x + 10\\A = – 2{x^2} – x + 10\\2)\,\,B = \left( {x + 3} \right)\left( {x + 3} \right) – {\left( {x + 3} \right)^2}\\B = {\left( {x + 3} \right)^2} – {\left( {x + 3} \right)^2}\\B = 0\end{array}$ Bình luận
Giải thích các bước giải: \[\begin{array}{l}1,\\A = \left( {{x^2} – 1} \right)\left( {x – 2} \right) – \left( {x – 2} \right)\left( {{x^2} + 2x + 4} \right)\\ = \left( {x – 2} \right)\left[ {\left( {{x^2} – 1} \right) – \left( {{x^2} + 2x + 4} \right)} \right]\\ = \left( {x – 2} \right)\left( { – 2x – 5} \right)\\ = – \left( {x – 2} \right)\left( {2x + 5} \right)\\2,\\\left( {x + 3} \right)\left( {x + 3} \right) – {\left( {x + 3} \right)^2}\\ = {\left( {x + 3} \right)^2} – {\left( {x + 3} \right)^2} = 0\end{array}\] Bình luận
$\begin{array}{l}
1)\,\,A = \left( {{x^2} – 1} \right)\left( {x – 2} \right) – \left( {x – 2} \right)\left( {{x^2} + 2x + 4} \right)\\
A = \left( {x – 2} \right)\left[ {\left( {{x^2} – 1} \right) – \left( {{x^2} + 2x + 4} \right)} \right]\\
A = \left( {x – 2} \right)\left( {{x^2} – 1 – {x^2} – 2x – 4} \right)\\
A = \left( {x – 2} \right)\left( { – 2x – 5} \right)\\
A = – 2{x^2} – 5x + 4x + 10\\
A = – 2{x^2} – x + 10\\
2)\,\,B = \left( {x + 3} \right)\left( {x + 3} \right) – {\left( {x + 3} \right)^2}\\
B = {\left( {x + 3} \right)^2} – {\left( {x + 3} \right)^2}\\
B = 0
\end{array}$
Giải thích các bước giải:
\[\begin{array}{l}
1,\\
A = \left( {{x^2} – 1} \right)\left( {x – 2} \right) – \left( {x – 2} \right)\left( {{x^2} + 2x + 4} \right)\\
= \left( {x – 2} \right)\left[ {\left( {{x^2} – 1} \right) – \left( {{x^2} + 2x + 4} \right)} \right]\\
= \left( {x – 2} \right)\left( { – 2x – 5} \right)\\
= – \left( {x – 2} \right)\left( {2x + 5} \right)\\
2,\\
\left( {x + 3} \right)\left( {x + 3} \right) – {\left( {x + 3} \right)^2}\\
= {\left( {x + 3} \right)^2} – {\left( {x + 3} \right)^2} = 0
\end{array}\]