Rút gọn: cos `x/5` cos `(2x)/5` cos `(4x)/5` cos `(8x)/5`

Rút gọn:
cos `x/5` cos `(2x)/5` cos `(4x)/5` cos `(8x)/5`

0 bình luận về “Rút gọn: cos `x/5` cos `(2x)/5` cos `(4x)/5` cos `(8x)/5`”

  1. $A=\cos\dfrac{x}{5}\cos\dfrac{2x}{5}\cos\dfrac{4x}{5}\cos\dfrac{8x}{5}$

    $A.\sin\dfrac{x}{5}=\sin\dfrac{x}{5}\cos\dfrac{x}{5}.\cos\dfrac{2x}{5}\cos\dfrac{4x}{5}\cos\dfrac{8x}{5}$

    $=\dfrac{1}{2}\sin\dfrac{2x}{5}\cos\dfrac{2x}{5}\cos\dfrac{4x}{5}\cos\dfrac{8x}{5}$

    $=\dfrac{1}{4}\sin\dfrac{4x}{5}\cos\dfrac{4x}{5}\cos\dfrac{8x}{5}$

    $=\dfrac{1}{8}\sin\dfrac{8x}{5}\cos\dfrac{8x}{5}$

    $=\dfrac{1}{16}\sin\dfrac{16x}{5}$

    Vậy $A=\dfrac{\sin\dfrac{16x}{5} }{16\sin\dfrac{x}{5}}$

    Bình luận
  2. Đáp án:

    $\dfrac{\sin\dfrac{16x}{5}}{16\sin\dfrac{x}{5}}$

    Giải thích các bước giải:

    $\quad \cos\dfrac x5\cos\dfrac{2x}{5}\cos\dfrac{4x}{5}\cos\dfrac{8x}{5}$

    $= \dfrac{2\sin\dfrac x5\cos\dfrac x5\cos\dfrac{2x}{5}\cos\dfrac{4x}{5}\cos\dfrac{8x}{5}}{2\sin\dfrac x5}$

    $= \dfrac{\sin\dfrac{2x}{5}\cos\dfrac{2x}{5}\cos\dfrac{4x}{5}\cos\dfrac{8x}{5}}{2\sin\dfrac x5}$

    $= \dfrac{2\sin\dfrac{2x}{5}\cos\dfrac{2x}{5}\cos\dfrac{4x}{5}\cos\dfrac{8x}{5}}{4\sin\dfrac x5}$

    $= \dfrac{\sin\dfrac{4x}{5}\cos\dfrac{4x}{5}\cos\dfrac{8x}{5}}{4\sin\dfrac x5}$

    $=\dfrac{2\sin\dfrac{4x}{5}\cos\dfrac{4x}{5}\cos\dfrac{8x}{5}}{8\sin\dfrac x5}$

    $= \dfrac{\sin\dfrac{8x}{5}\cos\dfrac{8x}{5}}{8\sin\dfrac x5}$

    $= \dfrac{2\sin\dfrac{8x}{5}\cos\dfrac{8x}{5}}{16\sin\dfrac x5}$

    $=\dfrac{\sin\dfrac{16x}{5}}{16\sin\dfrac{x}{5}}$

    Bình luận

Viết một bình luận