0 bình luận về “rút gọn:
$\frac{12.(1+\sqrt{x}.)^{11}x^{6}-2\sqrt{x}(1+\sqrt{x})^{12}.6x^{5}}{2x^{12}\sqrt{x}}$”
Đáp án:
\(\frac{{6{{\left( {1 + \sqrt x } \right)}^{11}}}}{{{x^7}}}\)
Giải thích các bước giải:
\(\begin{array}{l} P = \frac{{12{x^6}{{\left( {1 + \sqrt x } \right)}^{11}} – 12{x^5}\sqrt x {{\left( {1 + \sqrt x } \right)}^{12}}}}{{2{x^{12}}\sqrt x }}\\ = \frac{{12{x^5}\sqrt x {{\left( {1 + \sqrt x } \right)}^{11}}\left( {\sqrt x – 1 – \sqrt x } \right)}}{{2{x^{12}}\sqrt x }}\\ = – \frac{{12{x^5}\sqrt x {{\left( {1 + \sqrt x } \right)}^{11}}}}{{2{x^{12}}\sqrt x }}\\ = \frac{{6{{\left( {1 + \sqrt x } \right)}^{11}}}}{{{x^7}}} \end{array}\)
Đáp án:
\(\frac{{6{{\left( {1 + \sqrt x } \right)}^{11}}}}{{{x^7}}}\)
Giải thích các bước giải:
\(\begin{array}{l}
P = \frac{{12{x^6}{{\left( {1 + \sqrt x } \right)}^{11}} – 12{x^5}\sqrt x {{\left( {1 + \sqrt x } \right)}^{12}}}}{{2{x^{12}}\sqrt x }}\\
= \frac{{12{x^5}\sqrt x {{\left( {1 + \sqrt x } \right)}^{11}}\left( {\sqrt x – 1 – \sqrt x } \right)}}{{2{x^{12}}\sqrt x }}\\
= – \frac{{12{x^5}\sqrt x {{\left( {1 + \sqrt x } \right)}^{11}}}}{{2{x^{12}}\sqrt x }}\\
= \frac{{6{{\left( {1 + \sqrt x } \right)}^{11}}}}{{{x^7}}}
\end{array}\)