rút gọn $\frac{\frac{12(1+\sqrt{x})^{11}.x^{6}}{2\sqrt{x}}-\frac{2\sqrt{x}(1+\sqrt{x})^{12}.6x^{5}}{2\sqrt{x}}}{x^{12}}$

rút gọn
$\frac{\frac{12(1+\sqrt{x})^{11}.x^{6}}{2\sqrt{x}}-\frac{2\sqrt{x}(1+\sqrt{x})^{12}.6x^{5}}{2\sqrt{x}}}{x^{12}}$

0 bình luận về “rút gọn $\frac{\frac{12(1+\sqrt{x})^{11}.x^{6}}{2\sqrt{x}}-\frac{2\sqrt{x}(1+\sqrt{x})^{12}.6x^{5}}{2\sqrt{x}}}{x^{12}}$”

  1. Đáp án:

     $\dfrac{-6(1+\sqrt{x})^{11}}{x^{7}}\\ $ 

    Giải thích các bước giải:

    $\dfrac{\dfrac{12(1+\sqrt{x})^{11}x^6}{2\sqrt{x}}-\dfrac{2\sqrt{x}(1+\sqrt{x})^{12}.6x^5}{2\sqrt{x}}}{x^{12}}\\
    =\dfrac{12(1+\sqrt{x})^{11}x^6-2\sqrt{x}(1+\sqrt{x})^{12}.6x^5}{x^{12}.2\sqrt{x}}\\ \\

    =\dfrac{2x^5\left [6(1+\sqrt{x})^{11}x-\sqrt{x}(1+\sqrt{x})^{12}.6  \right ]}{x^{12}.2\sqrt{x}}\\ \\
    =\dfrac{\left [6(1+\sqrt{x})^{11}x-\sqrt{x}(1+\sqrt{x})^{12}.6  \right ]}{x^{7}.\sqrt{x}}\\ \\
    =\dfrac{6\sqrt{x}(1+\sqrt{x})^{11}\left [\sqrt{x}-(1+\sqrt{x})  \right ]}{x^{7}.\sqrt{x}}\\ \\
    =\dfrac{6(1+\sqrt{x})^{11}\left [\sqrt{x}-1-\sqrt{x}  \right ]}{x^{7}}\\ \\
    =\dfrac{-6(1+\sqrt{x})^{11}}{x^{7}}\\ $ 

    Bình luận

Viết một bình luận