rút gọn $\frac{\frac{12(1+\sqrt{x})^{11}.x^{6}}{2\sqrt{x}}-\frac{2\sqrt{x}(1+\sqrt{x})^{12}.6x^{5}}{2\sqrt{x}}}{x^{12}}$ 02/11/2021 Bởi Quinn rút gọn $\frac{\frac{12(1+\sqrt{x})^{11}.x^{6}}{2\sqrt{x}}-\frac{2\sqrt{x}(1+\sqrt{x})^{12}.6x^{5}}{2\sqrt{x}}}{x^{12}}$
Đáp án: $\dfrac{-6(1+\sqrt{x})^{11}}{x^{7}}\\ $ Giải thích các bước giải: $\dfrac{\dfrac{12(1+\sqrt{x})^{11}x^6}{2\sqrt{x}}-\dfrac{2\sqrt{x}(1+\sqrt{x})^{12}.6x^5}{2\sqrt{x}}}{x^{12}}\\=\dfrac{12(1+\sqrt{x})^{11}x^6-2\sqrt{x}(1+\sqrt{x})^{12}.6x^5}{x^{12}.2\sqrt{x}}\\ \\ =\dfrac{2x^5\left [6(1+\sqrt{x})^{11}x-\sqrt{x}(1+\sqrt{x})^{12}.6 \right ]}{x^{12}.2\sqrt{x}}\\ \\=\dfrac{\left [6(1+\sqrt{x})^{11}x-\sqrt{x}(1+\sqrt{x})^{12}.6 \right ]}{x^{7}.\sqrt{x}}\\ \\=\dfrac{6\sqrt{x}(1+\sqrt{x})^{11}\left [\sqrt{x}-(1+\sqrt{x}) \right ]}{x^{7}.\sqrt{x}}\\ \\=\dfrac{6(1+\sqrt{x})^{11}\left [\sqrt{x}-1-\sqrt{x} \right ]}{x^{7}}\\ \\=\dfrac{-6(1+\sqrt{x})^{11}}{x^{7}}\\ $ Bình luận
Đáp án:
$\dfrac{-6(1+\sqrt{x})^{11}}{x^{7}}\\ $
Giải thích các bước giải:
$\dfrac{\dfrac{12(1+\sqrt{x})^{11}x^6}{2\sqrt{x}}-\dfrac{2\sqrt{x}(1+\sqrt{x})^{12}.6x^5}{2\sqrt{x}}}{x^{12}}\\
=\dfrac{12(1+\sqrt{x})^{11}x^6-2\sqrt{x}(1+\sqrt{x})^{12}.6x^5}{x^{12}.2\sqrt{x}}\\ \\
=\dfrac{2x^5\left [6(1+\sqrt{x})^{11}x-\sqrt{x}(1+\sqrt{x})^{12}.6 \right ]}{x^{12}.2\sqrt{x}}\\ \\
=\dfrac{\left [6(1+\sqrt{x})^{11}x-\sqrt{x}(1+\sqrt{x})^{12}.6 \right ]}{x^{7}.\sqrt{x}}\\ \\
=\dfrac{6\sqrt{x}(1+\sqrt{x})^{11}\left [\sqrt{x}-(1+\sqrt{x}) \right ]}{x^{7}.\sqrt{x}}\\ \\
=\dfrac{6(1+\sqrt{x})^{11}\left [\sqrt{x}-1-\sqrt{x} \right ]}{x^{7}}\\ \\
=\dfrac{-6(1+\sqrt{x})^{11}}{x^{7}}\\ $