sin(x-pi/3)*cos(9pi/4 -x)-sin(5pi/4 -x)*cos(5pi/3 +x) help nhanh giúp với mọi người, chiều thi òi 11/08/2021 Bởi Aaliyah sin(x-pi/3)*cos(9pi/4 -x)-sin(5pi/4 -x)*cos(5pi/3 +x) help nhanh giúp với mọi người, chiều thi òi
$\begin{array}{l}\sin \left( {x – \dfrac{\pi }{3}} \right)\cos \left( {\dfrac{{9\pi }}{4} – x} \right) – \sin \left( {\dfrac{{5\pi }}{4} – x} \right)\cos \left( {\dfrac{{5\pi }}{3} + x} \right)\\ = \sin \left( {x – \dfrac{\pi }{3}} \right)\cos \left( {2\pi + \dfrac{\pi }{4} – x} \right) – \sin \left( {\pi + \dfrac{\pi }{4} – x} \right)\cos \left( {2\pi – \dfrac{\pi }{3} + x} \right)\\ = \sin \left( {x – \dfrac{\pi }{3}} \right)\cos \left( {\dfrac{\pi }{4} – x} \right) + \sin \left( {\dfrac{\pi }{4} – x} \right)\cos \left( {x – \dfrac{\pi }{3}} \right)\\ = \sin \left( {x – \dfrac{\pi }{3} + \dfrac{\pi }{4} – x} \right) = – \sin \dfrac{\pi }{{12}}\end{array}$ Bình luận
$\begin{array}{l}
\sin \left( {x – \dfrac{\pi }{3}} \right)\cos \left( {\dfrac{{9\pi }}{4} – x} \right) – \sin \left( {\dfrac{{5\pi }}{4} – x} \right)\cos \left( {\dfrac{{5\pi }}{3} + x} \right)\\
= \sin \left( {x – \dfrac{\pi }{3}} \right)\cos \left( {2\pi + \dfrac{\pi }{4} – x} \right) – \sin \left( {\pi + \dfrac{\pi }{4} – x} \right)\cos \left( {2\pi – \dfrac{\pi }{3} + x} \right)\\
= \sin \left( {x – \dfrac{\pi }{3}} \right)\cos \left( {\dfrac{\pi }{4} – x} \right) + \sin \left( {\dfrac{\pi }{4} – x} \right)\cos \left( {x – \dfrac{\pi }{3}} \right)\\
= \sin \left( {x – \dfrac{\pi }{3} + \dfrac{\pi }{4} – x} \right) = – \sin \dfrac{\pi }{{12}}
\end{array}$