Sin5x+ sin9x + 2sin^2x-1=0 Sin3x +sin2x =5sinx Sin(2x+pi/6)-sin(2x-pi/6)+1=căn3sin2x

Sin5x+ sin9x + 2sin^2x-1=0
Sin3x +sin2x =5sinx
Sin(2x+pi/6)-sin(2x-pi/6)+1=căn3sin2x

0 bình luận về “Sin5x+ sin9x + 2sin^2x-1=0 Sin3x +sin2x =5sinx Sin(2x+pi/6)-sin(2x-pi/6)+1=căn3sin2x”

  1. Giải thích các bước giải:

    Ta có:

    \(\begin{array}{l}
    *)\\
    \sin 5x + \sin 9x + 2{\sin ^2}x – 1 = 0\\
     \Leftrightarrow 2.\sin \dfrac{{5x + 9x}}{2}.\cos \dfrac{{5x – 9x}}{2} – \left( {1 – 2{{\sin }^2}x} \right) = 0\\
     \Leftrightarrow 2\sin 7x.\cos \left( { – 2x} \right) – \cos 2x = 0\\
     \Leftrightarrow 2\sin 7x.\cos 2x – \cos 2x = 0\\
     \Leftrightarrow \cos 2x.\left( {2\sin 7x – 1} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    \cos 2x = 0\\
    \sin 7x = \dfrac{1}{2}
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    2x = \dfrac{\pi }{2} + k\pi \\
    7x = \dfrac{\pi }{6} + k2\pi \\
    7x = \dfrac{{5\pi }}{6} + k2\pi 
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{\pi }{4} + \dfrac{{k\pi }}{2}\\
    x = \dfrac{\pi }{{42}} + \dfrac{{k2\pi }}{7}\\
    x = \dfrac{{5\pi }}{{42}} + \dfrac{{k2\pi }}{7}
    \end{array} \right.\\
    *)\\
    \sin \left( {2x + \dfrac{\pi }{6}} \right) – \sin \left( {2x – \dfrac{\pi }{6}} \right) + 1 = \sqrt 3 \sin 2x\\
     \Leftrightarrow \left( {\sin 2x.\cos \dfrac{\pi }{6} + \cos 2x.\sin \dfrac{\pi }{6}} \right) – \left( {\sin 2x.\cos \dfrac{\pi }{6} – \cos 2x.sin\dfrac{\pi }{6}} \right) + 1 = \sqrt 3 \sin 2x\\
     \Leftrightarrow 2\cos 2x.\sin \dfrac{\pi }{6} + 1 = \sqrt 3 \sin 2x\\
     \Leftrightarrow \cos 2x + 1 = \sqrt 3 \sin 2x\\
     \Leftrightarrow \dfrac{{\sqrt 3 }}{2}\sin 2x – \dfrac{1}{2}\cos 2x = \dfrac{1}{2}\\
     \Leftrightarrow \sin 2x.\cos \dfrac{\pi }{6} – \cos 2x.sin\dfrac{\pi }{6} = \sin \dfrac{\pi }{6}\\
     \Leftrightarrow \sin \left( {2x – \dfrac{\pi }{6}} \right) = \sin \dfrac{\pi }{6}\\
     \Leftrightarrow \left[ \begin{array}{l}
    2x – \dfrac{\pi }{6} = \dfrac{\pi }{6} + k2\pi \\
    2x – \dfrac{\pi }{6} = \dfrac{{5\pi }}{6} + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{\pi }{6} + k\pi \\
    x = \dfrac{\pi }{2} + k\pi 
    \end{array} \right.
    \end{array}\)

    Bình luận

Viết một bình luận