sina – cosa=1/5, (90 05/10/2021 Bởi Hailey sina – cosa=1/5, (90 { "@context": "https://schema.org", "@type": "QAPage", "mainEntity": { "@type": "Question", "name": " sina - cosa=1/5, (90
Đáp án: \[\tan 2a = \dfrac{{24}}{7}\] Giải thích các bước giải: \(\begin{array}{l}90^\circ < a < 270^\circ \Rightarrow \cos a < 0\\\sin a – \cos a = \dfrac{1}{5} \Rightarrow \sin a = \cos a + \dfrac{1}{5}\\{\sin ^2}a + {\cos ^2}a = 1\\ \Leftrightarrow {\left( {\cos a + \dfrac{1}{5}} \right)^2} + {\cos ^2}a = 1\\ \Leftrightarrow {\cos ^2}a + \dfrac{2}{5}\cos a + \dfrac{1}{{25}} + {\cos ^2}a = 1\\ \Leftrightarrow 2{\cos ^2}a + \dfrac{2}{5}\cos a – \dfrac{{24}}{{25}} = 0\\ \Leftrightarrow \left[ \begin{array}{l}\cos a = \dfrac{3}{5}\\\cos a = – \dfrac{4}{5}\end{array} \right.\\\cos a < 0 \Rightarrow \cos a = – \dfrac{4}{5} \Rightarrow \sin a = – \dfrac{3}{5}\\\sin 2a = 2\sin a.\cos a = 2.\left( { – \dfrac{3}{5}} \right).\left( { – \dfrac{4}{5}} \right) = \dfrac{{24}}{{25}}\\\cos 2a = 2{\cos ^2}a – 1 = 2.{\left( { – \dfrac{4}{5}} \right)^2} – 1 = \dfrac{7}{{25}}\\\tan 2a = \dfrac{{\sin 2a}}{{\cos 2a}} = \dfrac{{24}}{7}\end{array}\) Bình luận
Đáp án:
\[\tan 2a = \dfrac{{24}}{7}\]
Giải thích các bước giải:
\(\begin{array}{l}
90^\circ < a < 270^\circ \Rightarrow \cos a < 0\\
\sin a – \cos a = \dfrac{1}{5} \Rightarrow \sin a = \cos a + \dfrac{1}{5}\\
{\sin ^2}a + {\cos ^2}a = 1\\
\Leftrightarrow {\left( {\cos a + \dfrac{1}{5}} \right)^2} + {\cos ^2}a = 1\\
\Leftrightarrow {\cos ^2}a + \dfrac{2}{5}\cos a + \dfrac{1}{{25}} + {\cos ^2}a = 1\\
\Leftrightarrow 2{\cos ^2}a + \dfrac{2}{5}\cos a – \dfrac{{24}}{{25}} = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\cos a = \dfrac{3}{5}\\
\cos a = – \dfrac{4}{5}
\end{array} \right.\\
\cos a < 0 \Rightarrow \cos a = – \dfrac{4}{5} \Rightarrow \sin a = – \dfrac{3}{5}\\
\sin 2a = 2\sin a.\cos a = 2.\left( { – \dfrac{3}{5}} \right).\left( { – \dfrac{4}{5}} \right) = \dfrac{{24}}{{25}}\\
\cos 2a = 2{\cos ^2}a – 1 = 2.{\left( { – \dfrac{4}{5}} \right)^2} – 1 = \dfrac{7}{{25}}\\
\tan 2a = \dfrac{{\sin 2a}}{{\cos 2a}} = \dfrac{{24}}{7}
\end{array}\)