so sánh 1/2+1/2^2+…+1/2^2014 và 1 so sánh 1+ 1/2^2+1/3^2+…+1/100^2<2 21/08/2021 Bởi Anna so sánh 1/2+1/2^2+…+1/2^2014 và 1 so sánh 1+ 1/2^2+1/3^2+…+1/100^2<2
Ta có: Đặt `A=1/2+1/2^2+…+1/2^2014` `2A=1+1/2+…+1/2^2013``2A-A=(1+1/2+…+1/2^2013)-(1/2+1/2^2+…+1/2^2014)``A=1-1/2^2014<1`Vậy `A<1` Ta có: Đặt `B=1/2^2+1/3^2+…+1/100^2` `C=1+ 1/2^2+1/3^2+…+1/100^2` Theo bài ra ta có:`1/2^2=1/2.2<1/1.2``1/3^2=1/3.3<1/2.3``…………….``1/100^2=1/100.100<1/99.100` `=>B<1/1.2+1/2.3+…+1/99.100` `=1-1/2+1/2-1/3+…+1/99-1/100` `=1-1/100``=>“C=1+1-1/100=2-1/100<2`Vậy `C<2` Bình luận
Đặt `:X= 1/2+1/2^2+…+1/2^(2014)` `⇔2X= 1+1/2^2+…+1/2^(2013)` `⇔2X-X=1+1/2^2+…+1/2^(2013)-(1/2+1/2^2+…+1/2^(2014))` `⇔X=1-1/(2^(2014))(ĐPCM)` `A=1+ 1/2^2+1/3^2+…+1/(100^2)≤1+1/(1.2)+1/(2.3)+…+1/(99.100)` `⇔A<1+1-1/2+1/2-1/3+…+1/(99)-1/(100)` `⇔A<2-1/(100)<2(ĐPCM)` ` Bình luận
Ta có:
Đặt `A=1/2+1/2^2+…+1/2^2014`
`2A=1+1/2+…+1/2^2013`
`2A-A=(1+1/2+…+1/2^2013)-(1/2+1/2^2+…+1/2^2014)`
`A=1-1/2^2014<1`
Vậy `A<1`
Ta có:
Đặt `B=1/2^2+1/3^2+…+1/100^2`
`C=1+ 1/2^2+1/3^2+…+1/100^2`
Theo bài ra ta có:
`1/2^2=1/2.2<1/1.2`
`1/3^2=1/3.3<1/2.3`
`…………….`
`1/100^2=1/100.100<1/99.100`
`=>B<1/1.2+1/2.3+…+1/99.100`
`=1-1/2+1/2-1/3+…+1/99-1/100`
`=1-1/100`
`=>“C=1+1-1/100=2-1/100<2`
Vậy `C<2`
Đặt `:X= 1/2+1/2^2+…+1/2^(2014)`
`⇔2X= 1+1/2^2+…+1/2^(2013)`
`⇔2X-X=1+1/2^2+…+1/2^(2013)-(1/2+1/2^2+…+1/2^(2014))`
`⇔X=1-1/(2^(2014))(ĐPCM)`
`A=1+ 1/2^2+1/3^2+…+1/(100^2)≤1+1/(1.2)+1/(2.3)+…+1/(99.100)`
`⇔A<1+1-1/2+1/2-1/3+…+1/(99)-1/(100)`
`⇔A<2-1/(100)<2(ĐPCM)`
`