so sánh 10 mũ 5/10 mũ 5 + 1 và 10 mũ 5 + 1/10 mũ 5 + 2

so sánh 10 mũ 5/10 mũ 5 + 1 và 10 mũ 5 + 1/10 mũ 5 + 2

0 bình luận về “so sánh 10 mũ 5/10 mũ 5 + 1 và 10 mũ 5 + 1/10 mũ 5 + 2”

  1. Ta có: $1-\frac{10^{5}}{10^{5}+1} = \frac{1}{10^{5}+1}$

              $1-\frac{10^{5}+1}{10^{5}+2} = \frac{1}{10^{5}+2}$

    Vì $10^{5}+1<10^{5}+2$

    $⇒ \frac{1}{10^{5}+1}>\frac{1}{10^{5}+2}$

    $⇒ -\frac{1}{10^{5}+1}<-\frac{1}{10^{5}+2}$

    $⇒ 1-\frac{10^{5}}{10^{5}+1}<1-\frac{10^{5}+1}{10^{5}+2}$

    $⇒ \frac{10^{5}}{10^{5}+1} <\frac{10^{5}+1}{10^{5}+2} $

     

    Bình luận
  2. Ta có

    $ \dfrac{10^5}{10^5 +1} = \dfrac{10^5 . (10^5+2)}{(10^5+1). (10^5 +2)} = \dfrac{10^{10} +2 . 10^5}{(10^5+1). (10^+2)} $

    $ \dfrac{10^5 +1}{10^5+2} = \dfrac{ (10^5+1)(10^5+1)}{(10^5+1). (10^+2)} = \dfrac{10^5.(10^5+1) + 1.(10^5+1)}{(10^5+1). (10^+2)}$

    $ = \dfrac{10^{10} + 10^5 + 10^5 + 1}{(10^5+1). (10^+2)} = \dfrac{10^{10} + 2. 10^5 +1}{(10^5+1). (10^+2)}$

    Vì $ 10^{10} +2 . 10^5 < 10^{10} +2 . 10^5+1$

    $\to \dfrac{10^{10} +2 . 10^5}{(10^5+1). (10^+2)} < \dfrac{10^{10} + 2. 10^5 +1}{(10^5+1). (10^+2)}$

    $\to \dfrac{10^5}{10^5 +1}  < \dfrac{10^5 +1}{10^5+2}$

    Bình luận

Viết một bình luận