So sánh A=1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20 và 7/12 27/07/2021 Bởi Brielle So sánh A=1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20 và 7/12
Ta có: `1/11>1/20; 1/12>1/20; 1/13>1/20;…;1/19>1/20` `=> 1/11+1/12+1/13+…+1/20>1/20+1/20+…+1/20`(`10` số hạng) `=> 1/11+1/12+..+1/20>10/20` `=> A>1/2` Bình luận
Đáp án: `A>7/12` Giải thích các bước giải: Ta có `1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20` `=(1/11+1/12+1/13+1/14+1/15)+(1/16+1/17+1/18+1/19+1/20)` Ta thấy `1/11>1/15;1/12>1/15;1/13>1/15;1/14>1/15` `=>1/11+1/12+1/13+1/14+1/15>1/15+1/15+1/15+1/15+1/15` (Có `5` số hạng) `=>1/11+1/12+1/13+1/14+1/15>1/3` `(1)` Ta thấy `1/16>1/20;1/17>1/20;1/18>1/20;1/19>1/20` `=>1/16+1/17+1/18+1/19+1/20>1/20+1/20+1/20+1/20` (Có `5` số hạng) `=>1/16+1/17+1/18+1/19+1/20>1/4` `(1)` Từ `(1)` và `(2)` ta có: `1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20>1/3+1/4=7/12` Vậy `1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20>7/12`. Bình luận
Ta có: `1/11>1/20; 1/12>1/20; 1/13>1/20;…;1/19>1/20`
`=> 1/11+1/12+1/13+…+1/20>1/20+1/20+…+1/20`(`10` số hạng)
`=> 1/11+1/12+..+1/20>10/20`
`=> A>1/2`
Đáp án:
`A>7/12`
Giải thích các bước giải:
Ta có `1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20`
`=(1/11+1/12+1/13+1/14+1/15)+(1/16+1/17+1/18+1/19+1/20)`
Ta thấy `1/11>1/15;1/12>1/15;1/13>1/15;1/14>1/15`
`=>1/11+1/12+1/13+1/14+1/15>1/15+1/15+1/15+1/15+1/15` (Có `5` số hạng)
`=>1/11+1/12+1/13+1/14+1/15>1/3` `(1)`
Ta thấy `1/16>1/20;1/17>1/20;1/18>1/20;1/19>1/20`
`=>1/16+1/17+1/18+1/19+1/20>1/20+1/20+1/20+1/20` (Có `5` số hạng)
`=>1/16+1/17+1/18+1/19+1/20>1/4` `(1)`
Từ `(1)` và `(2)` ta có:
`1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20>1/3+1/4=7/12`
Vậy `1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20>7/12`.