$So$ $sánh$ $\frac{2018^{2019}-2}{2018^{2020}-2}$ $và$ $\frac{2018^{2019}-2+2020}{2018^{2020}-2+2020}$

$So$ $sánh$ $\frac{2018^{2019}-2}{2018^{2020}-2}$ $và$ $\frac{2018^{2019}-2+2020}{2018^{2020}-2+2020}$

0 bình luận về “$So$ $sánh$ $\frac{2018^{2019}-2}{2018^{2020}-2}$ $và$ $\frac{2018^{2019}-2+2020}{2018^{2020}-2+2020}$”

  1. Đáp án:

    $A<B$

    Giải thích các bước giải:

     Đặt 
    $A=\dfrac{2018^{2019}-2}{2018^{2020}-2}\\
    \Rightarrow 2018A=\dfrac{2018^{2020}-2.2018}{2018^{2020}-2}\\
    =\dfrac{2018^{2020}-2-4034}{2018^{2020}-2}=1-\dfrac{4034}{2018^{2020}-2}\\
    B=\dfrac{2018^{2019}-2+2020}{2018^{2020}-2+2020}\\
    =\dfrac{2018^{2019}+2018}{2018^{2020}+2018}\\
    =\dfrac{2018^{2018}+1}{2018^{2019}+1}\\
    \Rightarrow 2018B=\dfrac{2018^{2019}+2018}{2018^{2019}+1}\\
    =\dfrac{2018^{2019}+1+2017}{2018^{2019}+1}\\
    =1+\dfrac{2017}{2018^{2019}+1}$
    Vì $1-\dfrac{4034}{2018^{2020}-2}<1<1+\dfrac{2017}{2018^{2019}+1}$
    Nên $2018A<2018B\Rightarrow A<B$

    Bình luận

Viết một bình luận