So sánh \({\left( {{{20}^{2016}} + {{11}^{2016}}} \right)^{2017}}\,\,\& \,\,{\left( {{{20}^{2017}} + {{11}^{2017}}} \right)^{2016}}\)

So sánh \({\left( {{{20}^{2016}} + {{11}^{2016}}} \right)^{2017}}\,\,\& \,\,{\left( {{{20}^{2017}} + {{11}^{2017}}} \right)^{2016}}\)

0 bình luận về “So sánh \({\left( {{{20}^{2016}} + {{11}^{2016}}} \right)^{2017}}\,\,\& \,\,{\left( {{{20}^{2017}} + {{11}^{2017}}} \right)^{2016}}\)”

  1. $(20^{2016}+11^{2016})^{2017}$

    $= (20^{2016}+11^{2016})^{2016}.(20^{2016}+11^{2016})$

    $> (20^{2016}+11^{2016})^{2016}.20^{2016}$

    $= (20.20^{2016}+20.11^{2016})^{2016}$

    $> (20.20^{2016}+11.11^{2016})^{2016}$

    $= (20^{2017}+11^{2017})^{2016}$

    Vậy $(20^{2016}+11^{2016})^{2017}>(20^{2017}+11^{2017})^{2016}$

    Bình luận
  2. Đáp án:  `(20^2016 + 11^2016)^2017 > (20^2017 + 11^2017)^2016`

    Giải thích các bước giải:

    Đặt `A = (20^2016 + 11^2016)^2017` và `B = (20^2017 + 11^2017)^2016`

    Ta có: `A = (20^2016 + 11^2016)^2017`

    `= (20^2016 + 11^2016)^2016 . (20^2016 + 11^2016)`

    `> (20^2016 + 11^2016)^2016 . 20^2016 = ((20^2016 + 11^2016) . 20)^2016`

     `= (20^2017 + 20 . 11^2016)^2016 > (20^2017 + 11 . 11^2016)^2016`

     `= (20^2017 + 11^2017)^2016`

    `⇒ A > B`

    `⇒ (20^2016 + 11^2016)^2017 > (20^2017 + 11^2017)^2016`

    Vậy `(20^2016 + 11^2016)^2017 > (20^2017 + 11^2017)^2016`

     

    Bình luận

Viết một bình luận