$\sqrt[]{x-1}$ +$\sqrt[]{x+7}$+ $x^{2}$ -3x-2=0 13/09/2021 Bởi Kinsley $\sqrt[]{x-1}$ +$\sqrt[]{x+7}$+ $x^{2}$ -3x-2=0
Giải thích các bước giải: \(\begin{array}{l}\sqrt {x – 1} + \sqrt {x + 7} + {x^2} – 3x – 2 = 0(*)\\Dk:x \ge 1\\(*) \Leftrightarrow (\sqrt {x – 1} – 1) + (\sqrt {x + 7} – 3) + {x^2} – 3x + 2 = 0\\ \Leftrightarrow \frac{{x – 2}}{{\sqrt {x – 1} + 1}} + \frac{{x – 2}}{{\sqrt {x + 7} + 3}} + (x – 2)(x – 1) = 0\\ \Leftrightarrow (x – 2)\left( {\frac{1}{{\sqrt {x – 1} + 1}} + \frac{1}{{\sqrt {x + 7} + 3}} + x – 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2 \to Tm\\\frac{1}{{\sqrt {x – 1} + 1}} + \frac{1}{{\sqrt {x + 7} + 3}} + x – 1 = 0(**)\end{array} \right.\\Ta\;co:\frac{1}{{\sqrt {x – 1} + 1}} > 0;\frac{1}{{\sqrt {x + 7} + 3}} > 0;x – 1 \ge \forall x \ge 1\\ \Rightarrow (**)\;vo\;nghiem\\Vay\;nghiem\;pt\;la\;x = 2\end{array}\) Bình luận
Giải thích các bước giải:
\(\begin{array}{l}
\sqrt {x – 1} + \sqrt {x + 7} + {x^2} – 3x – 2 = 0(*)\\
Dk:x \ge 1\\
(*) \Leftrightarrow (\sqrt {x – 1} – 1) + (\sqrt {x + 7} – 3) + {x^2} – 3x + 2 = 0\\
\Leftrightarrow \frac{{x – 2}}{{\sqrt {x – 1} + 1}} + \frac{{x – 2}}{{\sqrt {x + 7} + 3}} + (x – 2)(x – 1) = 0\\
\Leftrightarrow (x – 2)\left( {\frac{1}{{\sqrt {x – 1} + 1}} + \frac{1}{{\sqrt {x + 7} + 3}} + x – 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = 2 \to Tm\\
\frac{1}{{\sqrt {x – 1} + 1}} + \frac{1}{{\sqrt {x + 7} + 3}} + x – 1 = 0(**)
\end{array} \right.\\
Ta\;co:\frac{1}{{\sqrt {x – 1} + 1}} > 0;\frac{1}{{\sqrt {x + 7} + 3}} > 0;x – 1 \ge \forall x \ge 1\\
\Rightarrow (**)\;vo\;nghiem\\
Vay\;nghiem\;pt\;la\;x = 2
\end{array}\)