Tại cùng một nơi trên mặt đất hai con lắc đơn có chiều dài lần lượt là l1 l2 Dao động với các chu kỳ tương ứng là T1=0,75 T2=1s Cũng tại nơi đây con l

Tại cùng một nơi trên mặt đất hai con lắc đơn có chiều dài lần lượt là l1 l2 Dao động với các chu kỳ tương ứng là T1=0,75 T2=1s Cũng tại nơi đây con lắc đơn có chiều dài L1 L2 Dao động với chu kỳ là bao nhiêu cho biết các con lớp này đều dao động với các biên độ nhỏ

0 bình luận về “Tại cùng một nơi trên mặt đất hai con lắc đơn có chiều dài lần lượt là l1 l2 Dao động với các chu kỳ tương ứng là T1=0,75 T2=1s Cũng tại nơi đây con l”

  1. Đáp án:

    \(T = \sqrt {T_1^2 + T_2^2}  = 1,25s\)

    Giải thích các bước giải:

    Ta có:

    \(\begin{array}{l}
    \left\{ \begin{array}{l}
    l = {l_1} \Rightarrow {T_1} = 2\pi \sqrt {\frac{{{l_1}}}{g}}  \Rightarrow T_1^2 = 4{\pi ^2}.\frac{{{l_1}}}{g}\\
    l = {l_2} \Rightarrow {T_2} = 2\pi \sqrt {\frac{{{l_2}}}{g}}  \Rightarrow T_2^2 = 4{\pi ^2}.\frac{{{l_2}}}{g}\\
    l = {l_1} + {l_2} \Rightarrow T = 2\pi \sqrt {\frac{{{l_1} + {l_2}}}{g}}  \Rightarrow {T^2} = 4{\pi ^2}.\frac{{{l_1} + {l_2}}}{g}
    \end{array} \right.\\
     \Rightarrow {T^2} = 4{\pi ^2}.\frac{{{l_1}}}{g} + 4{\pi ^2}.\frac{{{l_1}}}{g} = T_1^2 + T_2^2\\
     \Rightarrow T = \sqrt {T_1^2 + T_2^2}  = \sqrt {{{0,75}^2} + {1^2}}  = 1,25s
    \end{array}\)

    Bình luận

Viết một bình luận