Thu gọn biểu thức sau (a+b−c)+(a b+c)−(b+c-a)−(a−b−c) 17/07/2021 Bởi Brielle Thu gọn biểu thức sau (a+b−c)+(a b+c)−(b+c-a)−(a−b−c)
`( a + b – c ) + ( a – b + c ) – ( b + c – a ) – ( a – b – c )` `= a + b – c + a – b + c – b – c + a – a + b + c` `= ( a + a + a – a ) + ( b – b – b + b ) + ( – c + c – c + c )` `= 2a + 0 + 0` `= 2a ` Bình luận
(a+b−c)+(a b+c)−(b+c-a)−(a−b−c) = a+b-c + ab + c -b-c+a-a+b+c = (a + a -a+a) + (b-b+b-b) + (-c+c+-c+c) = 2a + 0 + 0 = 2a Bình luận
`( a + b – c ) + ( a – b + c ) – ( b + c – a ) – ( a – b – c )`
`= a + b – c + a – b + c – b – c + a – a + b + c`
`= ( a + a + a – a ) + ( b – b – b + b ) + ( – c + c – c + c )`
`= 2a + 0 + 0`
`= 2a `
(a+b−c)+(a b+c)−(b+c-a)−(a−b−c)
= a+b-c + ab + c -b-c+a-a+b+c
= (a + a -a+a) + (b-b+b-b) + (-c+c+-c+c)
= 2a + 0 + 0
= 2a