Tìm x 1) | x + 3/5 | – | x – 7/3 | = 0 2) |x – 2 |< 3 3) | 5/3 x | = |-1/6| 4) | 1/2 x | = 3x - 2 5) | x - 1 | = 3x + 2 6) |5x| = x - 12 7) | 7

Tìm x
1) | x + 3/5 | – | x – 7/3 | = 0
2) |x – 2 |< 3 3) | 5/3 x | = |-1/6| 4) | 1/2 x | = 3x - 2 5) | x - 1 | = 3x + 2 6) |5x| = x - 12 7) | 7 - x | = 5x + 1 8) | 3/4 x - 3/4 | - 3/4 = | -3/4 |

0 bình luận về “Tìm x 1) | x + 3/5 | – | x – 7/3 | = 0 2) |x – 2 |< 3 3) | 5/3 x | = |-1/6| 4) | 1/2 x | = 3x - 2 5) | x - 1 | = 3x + 2 6) |5x| = x - 12 7) | 7”

  1. Giải thích các bước giải:

    Ta có:

    \(\begin{array}{l}
    1,\\
    \left| {x + \dfrac{3}{5}} \right| – \left| {x – \dfrac{7}{3}} \right| = 0\\
     \Leftrightarrow \left| {x + \dfrac{3}{5}} \right| = \left| {x – \dfrac{7}{3}} \right|\\
     \Leftrightarrow \left[ \begin{array}{l}
    x + \dfrac{3}{5} = x – \dfrac{7}{3}\\
    x + \dfrac{3}{5} = \dfrac{7}{3} – x
    \end{array} \right. \Leftrightarrow x = \dfrac{{13}}{{15}}\\
    2,\\
    \left| {x – 2} \right| < 3\\
     \Leftrightarrow  – 3 < x – 2 < 3\\
     \Leftrightarrow  – 1 < x < 5\\
    3,\\
    \left| {\dfrac{5}{3}x} \right| = \left| { – \dfrac{1}{6}} \right|\\
     \Leftrightarrow \left[ \begin{array}{l}
    \dfrac{5}{3}x =  – \dfrac{1}{6}\\
    \dfrac{5}{3}x = \dfrac{1}{6}
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    x =  – \dfrac{1}{{10}}\\
    x = \dfrac{1}{{10}}
    \end{array} \right.\\
    4,\\
    \left| {\dfrac{1}{2}x} \right| = 3x – 2\\
     \Leftrightarrow \left\{ \begin{array}{l}
    3x – 2 \ge 0\\
    \left[ \begin{array}{l}
    \dfrac{1}{2}x = 3x – 2\\
    \dfrac{1}{2}x =  – 3x + 2
    \end{array} \right.
    \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
    x \ge \dfrac{2}{3}\\
    \left[ \begin{array}{l}
    x = \dfrac{4}{5}\\
    x = \dfrac{4}{7}
    \end{array} \right.
    \end{array} \right. \Leftrightarrow x = \dfrac{4}{5}\\
    5,\\
    \left| {x – 1} \right| = 3x + 2\\
     \Leftrightarrow \left\{ \begin{array}{l}
    3x + 2 \ge 0\\
    \left[ \begin{array}{l}
    x – 1 = 3x + 2\\
    x – 1 =  – 3x – 2
    \end{array} \right.
    \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
    x \ge  – \dfrac{2}{3}\\
    \left[ \begin{array}{l}
    x =  – \dfrac{3}{2}\\
    x =  – \dfrac{1}{4}
    \end{array} \right.
    \end{array} \right. \Leftrightarrow x =  – \dfrac{1}{4}\\
    6,\\
    \left| {5x} \right| = x – 12\\
     \Leftrightarrow \left\{ \begin{array}{l}
    x – 12 \ge 0\\
    \left[ \begin{array}{l}
    5x = x – 12\\
    5x =  – x + 12
    \end{array} \right.
    \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
    x \ge 12\\
    \left[ \begin{array}{l}
    x =  – 3\\
    x = 2
    \end{array} \right.
    \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {vn} \right)\\
    7,\\
    \left| {7 – x} \right| = 5x + 1\\
     \Leftrightarrow \left\{ \begin{array}{l}
    5x + 1 \ge 0\\
    \left[ \begin{array}{l}
    7 – x = 5x + 1\\
    7 – x =  – 5x – 1
    \end{array} \right.
    \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
    x \ge  – \dfrac{1}{5}\\
    \left[ \begin{array}{l}
    x = 1\\
    x =  – 2
    \end{array} \right.
    \end{array} \right. \Leftrightarrow x = 1\\
    8,\\
    \left| {\dfrac{3}{4}x – \dfrac{3}{4}} \right| – \dfrac{3}{4} = \left| { – \dfrac{3}{4}} \right|\\
     \Leftrightarrow \left| {\dfrac{3}{4}x – \dfrac{3}{4}} \right| – \dfrac{3}{4} = \dfrac{3}{4}\\
     \Leftrightarrow \left| {\dfrac{3}{4}x – \dfrac{3}{4}} \right| = \dfrac{3}{2}\\
     \Leftrightarrow \left[ \begin{array}{l}
    \dfrac{3}{4}x – \dfrac{3}{4} = \dfrac{3}{2}\\
    \dfrac{3}{4}x – \dfrac{3}{4} =  – \dfrac{3}{2}
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = 3\\
    x =  – 1
    \end{array} \right.
    \end{array}\)

    Bình luận

Viết một bình luận