Tìm x
1) | x + 3/5 | – | x – 7/3 | = 0
2) |x – 2 |< 3
3) | 5/3 x | = |-1/6|
4) | 1/2 x | = 3x - 2
5) | x - 1 | = 3x + 2
6) |5x| = x - 12
7) | 7 - x | = 5x + 1
8) | 3/4 x - 3/4 | - 3/4 = | -3/4 |
Tìm x
1) | x + 3/5 | – | x – 7/3 | = 0
2) |x – 2 |< 3
3) | 5/3 x | = |-1/6|
4) | 1/2 x | = 3x - 2
5) | x - 1 | = 3x + 2
6) |5x| = x - 12
7) | 7 - x | = 5x + 1
8) | 3/4 x - 3/4 | - 3/4 = | -3/4 |
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
1,\\
\left| {x + \dfrac{3}{5}} \right| – \left| {x – \dfrac{7}{3}} \right| = 0\\
\Leftrightarrow \left| {x + \dfrac{3}{5}} \right| = \left| {x – \dfrac{7}{3}} \right|\\
\Leftrightarrow \left[ \begin{array}{l}
x + \dfrac{3}{5} = x – \dfrac{7}{3}\\
x + \dfrac{3}{5} = \dfrac{7}{3} – x
\end{array} \right. \Leftrightarrow x = \dfrac{{13}}{{15}}\\
2,\\
\left| {x – 2} \right| < 3\\
\Leftrightarrow – 3 < x – 2 < 3\\
\Leftrightarrow – 1 < x < 5\\
3,\\
\left| {\dfrac{5}{3}x} \right| = \left| { – \dfrac{1}{6}} \right|\\
\Leftrightarrow \left[ \begin{array}{l}
\dfrac{5}{3}x = – \dfrac{1}{6}\\
\dfrac{5}{3}x = \dfrac{1}{6}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = – \dfrac{1}{{10}}\\
x = \dfrac{1}{{10}}
\end{array} \right.\\
4,\\
\left| {\dfrac{1}{2}x} \right| = 3x – 2\\
\Leftrightarrow \left\{ \begin{array}{l}
3x – 2 \ge 0\\
\left[ \begin{array}{l}
\dfrac{1}{2}x = 3x – 2\\
\dfrac{1}{2}x = – 3x + 2
\end{array} \right.
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge \dfrac{2}{3}\\
\left[ \begin{array}{l}
x = \dfrac{4}{5}\\
x = \dfrac{4}{7}
\end{array} \right.
\end{array} \right. \Leftrightarrow x = \dfrac{4}{5}\\
5,\\
\left| {x – 1} \right| = 3x + 2\\
\Leftrightarrow \left\{ \begin{array}{l}
3x + 2 \ge 0\\
\left[ \begin{array}{l}
x – 1 = 3x + 2\\
x – 1 = – 3x – 2
\end{array} \right.
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge – \dfrac{2}{3}\\
\left[ \begin{array}{l}
x = – \dfrac{3}{2}\\
x = – \dfrac{1}{4}
\end{array} \right.
\end{array} \right. \Leftrightarrow x = – \dfrac{1}{4}\\
6,\\
\left| {5x} \right| = x – 12\\
\Leftrightarrow \left\{ \begin{array}{l}
x – 12 \ge 0\\
\left[ \begin{array}{l}
5x = x – 12\\
5x = – x + 12
\end{array} \right.
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge 12\\
\left[ \begin{array}{l}
x = – 3\\
x = 2
\end{array} \right.
\end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {vn} \right)\\
7,\\
\left| {7 – x} \right| = 5x + 1\\
\Leftrightarrow \left\{ \begin{array}{l}
5x + 1 \ge 0\\
\left[ \begin{array}{l}
7 – x = 5x + 1\\
7 – x = – 5x – 1
\end{array} \right.
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge – \dfrac{1}{5}\\
\left[ \begin{array}{l}
x = 1\\
x = – 2
\end{array} \right.
\end{array} \right. \Leftrightarrow x = 1\\
8,\\
\left| {\dfrac{3}{4}x – \dfrac{3}{4}} \right| – \dfrac{3}{4} = \left| { – \dfrac{3}{4}} \right|\\
\Leftrightarrow \left| {\dfrac{3}{4}x – \dfrac{3}{4}} \right| – \dfrac{3}{4} = \dfrac{3}{4}\\
\Leftrightarrow \left| {\dfrac{3}{4}x – \dfrac{3}{4}} \right| = \dfrac{3}{2}\\
\Leftrightarrow \left[ \begin{array}{l}
\dfrac{3}{4}x – \dfrac{3}{4} = \dfrac{3}{2}\\
\dfrac{3}{4}x – \dfrac{3}{4} = – \dfrac{3}{2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 3\\
x = – 1
\end{array} \right.
\end{array}\)