tìm x 2.(x+1)^2 – 1 =49 3^2.3^x =3^5 32<2^x<128 (x-1 )^3 =125 2^x+2-2^x =

tìm x
2.(x+1)^2 – 1 =49 3^2.3^x =3^5
32<2^x<128 (x-1 )^3 =125 2^x+2-2^x = 96

0 bình luận về “tìm x 2.(x+1)^2 – 1 =49 3^2.3^x =3^5 32<2^x<128 (x-1 )^3 =125 2^x+2-2^x =”

  1. Bạn tham khảo :

    $2(x+1)^2 – 1 = 49$

    $⇒ 2(x+1)^2 = 50$ 

    $⇒ (x+1)^2 = 25$

    $⇒ (x+1)^2 = 5^2$

    $⇒ x+1 = 5$

    $⇒ x = 4$ 

    $3^2 . 3^x = 3^5$

    $3^{2+x} = 3^{5}$

    $⇒ 2+x =5$

    $⇒ x  = 3$

    $32< 2^x < 128$

    ⇒ $ 2^5 < 2^x < 2^7$

    ⇒ $x = 6$ 

    $(x-1)^3 = 125$

    ⇒ $(x – 1)=5^3$

    ⇒ $x  – 1 = 5$

    ⇒ $x = 6$

    $2^x + 2 – 2^x = 96$

    $(4 – 1) . 2^x = 96$

    $3 . 2^x = 96$

    $ ⇒ 2^x = 32$

    $⇒ 2^x = 2^5$
    $⇒ x = 5$

     

    Bình luận
  2. Đáp án:

    \(\eqalign{
    & a)\,\,x = 4 \cr
    & b)\,\,\,x = 3 \cr
    & c)\,\,\,x = 6 \cr
    & d)\,\,x = 6 \cr
    & e)\,\,x = 5 \cr} \)

    Giải thích các bước giải:

    $$\eqalign{
    & a)\,\,2{\left( {x + 1} \right)^2} – 1 = 49 \cr
    & \,\,\,\,\,\,2{\left( {x + 1} \right)^2}\,\,\,\,\,\,\,\, = 49 + 1 \cr
    & \,\,\,\,\,\,2{\left( {x + 1} \right)^2}\,\,\,\,\,\,\,\, = 50 \cr
    & \,\,\,\,\,\,\,\,\,\,\,{\left( {x + 1} \right)^2}\,\,\,\,\,\, = 50:2 \cr
    & \,\,\,\,\,\,\,\,\,\,\,{\left( {x + 1} \right)^2}\,\,\,\,\,\, = 25 \cr
    & \,\,\,\,\,\,\,\,\,\,\,\,x + 1\,\,\,\,\,\,\,\,\,\,\, = 5 \cr
    & \,\,\,\,\,\,\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 5 – 1 \cr
    & \,\,\,\,\,\,\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 4 \cr
    & b)\,\,{3^2}{.3^x} = {3^5} \cr
    & \,\,\,\,\,\,\,\,\,\,\,\,{3^x} = {3^5}:{3^2} \cr
    & \,\,\,\,\,\,\,\,\,\,\,{3^x} = {3^{5 – 2}} \cr
    & \,\,\,\,\,\,\,\,\,\,\,{3^x} = {3^3} \cr
    & \,\,\,\,\,\,\,\,\,\,\,x = 3 \cr
    & c)\,\,32 < {2^x} < 128 \cr & \,\,\,\,\,\,\,{2^5} < {2^x} < {2^7} \cr & \,\,\,\,\,\,\,\,5 < x < 7 \cr & \,\,\,\,\,\,\,\,x = 6 \cr & d)\,\,{\left( {x - 1} \right)^3} = 125 \cr & \,\,\,\,\,\,\,\,{\left( {x - 1} \right)^3} = {5^3} \cr & \,\,\,\,\,\,\,\,\,\,x - 1 = 5 \cr & \,\,\,\,\,\,\,\,\,\,x = \,\,5 + 1 \cr & \,\,\,\,\,\,\,\,\,\,x = 6 \cr & e)\,\,{2^{x + 2}} - {2^x} = 96 \cr & \,\,\,\,\,{2^x}{.2^2} - {2^x} = 96 \cr & \,\,\,\,\,{2^x}\left( {4 - 1} \right) = 96 \cr & \,\,\,\,\,{2^x}.3 = 96 \cr & \,\,\,\,\,{2^x}\,\,\,\,\, = 96:3 \cr & \,\,\,\,\,{2^x}\,\,\,\,\, = 32 \cr & \,\,\,\,\,{2^x}\,\,\,\,\, = {2^5} \cr & \,\,\,\,\,x\,\,\,\,\,\,\, = 5 \cr} $$

    Bình luận

Viết một bình luận