Tìm x ( 2x – 1 ) . ( 3x + 5 ) = 0 ( x – 1 )^2 = 9

Tìm x
( 2x – 1 ) . ( 3x + 5 ) = 0
( x – 1 )^2 = 9

0 bình luận về “Tìm x ( 2x – 1 ) . ( 3x + 5 ) = 0 ( x – 1 )^2 = 9”

  1. Đáp án:

    \(\left[ \begin{array}{l}x=\dfrac{1}{2}\\x=\dfrac{-5}{3} \end{array} \right.\)

    \(\left[ \begin{array}{l}x=4\\x=-2\end{array} \right.\) 

    Giải thích các bước giải:

    `( 2x – 1 ) . ( 3x + 5 ) = 0`
    `=>`\(\left[ \begin{array}{l}2x-1=0\\3x+5=0\end{array} \right.\) 
    `=>`\(\left[ \begin{array}{l}2x=0+1\\3x=0-5\end{array} \right.\) 
    `=>`\(\left[ \begin{array}{l}2x=1\\3x=-5\end{array} \right.\)
    `=>`\(\left[ \begin{array}{l}x=1:2\\x=-5:3\end{array} \right.\) 
    `=>`\(\left[ \begin{array}{l}x=\dfrac{1}{2}\\x=\dfrac{-5}{3} \end{array} \right.\)
    `( x – 1 )^2 = 9`
    `=>`\(\left[ \begin{array}{l}(x-1)^2=3^2\\(x-1)^2=(-3)^2\end{array} \right.\) 
    `=>`\(\left[ \begin{array}{l}x-1=3\\x-1=-3\end{array} \right.\) 
    `=>`\(\left[ \begin{array}{l}x=3+1\\x=-3+1\end{array} \right.\) 
    `=>`\(\left[ \begin{array}{l}x=4\\x=-2\end{array} \right.\) 

    Bình luận
  2. Giải thích các bước giải:

    $(2x-1)(3x+5)=0$

    $⇔$  \(\left[ \begin{array}{l}2x-1=0\\3x+5=0\end{array} \right.\) $⇔$   \(\left[ \begin{array}{l}2x=1\\3x=-5\end{array} \right.\) $⇔$  \(\left[ \begin{array}{l}x=\dfrac{1}{2}\\x=-\dfrac{5}{3}\end{array} \right.\) 

    $\text{Vậy $x∈\{-\dfrac{5}{3};\dfrac{1}{2}\}$}$

    $(x-1)^2=9$

    $⇔(x-1)^2=(±3)^2$

    $⇔$ \(\left[ \begin{array}{l}x-1=3\\x-1=-3\end{array} \right.\) $⇔$   \(\left[ \begin{array}{l}x=4\\x=-2\end{array} \right.\)  

    $\text{ Vậy $x∈\{-2;4\}$}$

    Học tốt!!!

    Bình luận

Viết một bình luận