TÌM X:2^x+2^x+1+2^x+2+2^x+3+…+2^x+2015=2^2019-8 20/10/2021 Bởi Daisy TÌM X:2^x+2^x+1+2^x+2+2^x+3+…+2^x+2015=2^2019-8
Đáp án: x=3 Giải thích các bước giải: $\begin{array}{l}A = {2^x} + {2^{x + 1}} + {2^{x + 2}} + … + {2^{x + 2015}}\\ \Rightarrow 2A = {2^{x + 1}} + {2^{x + 1}} + {2^{x + 3}} + .. + {2^{x + 2016}}\\ \Rightarrow 2A – A = {2^{x + 2016}} – {2^x}\\ \Rightarrow A = {2^x}{.2^{2016}} – {2^x}\\ \Rightarrow {2^x}{.2^{2016}} – {2^x} = {2^{2019}} – 8 = {2^{2019}} – {2^3}\\ \Rightarrow x = 3\end{array}$ Bình luận
Em tham khảo $N=2^x+2^{x+1}+2^{x+2}+….+2^{x+2015}$ $⇒2N=2^{x+1}+2^{x+2}+….+2^{x+2016}$ $⇒2N-N=(2^{x+1}+2^{x+2}+….+2^{x+2016})-(2^x+2^{x+1}+2^{x+2}+….+2^{x+2015})$ $⇒N=2^{x+2016}-2^x$ $⇒2^{x+2016}-2x=2^{2019}-8$ hay $2^{x+2016}-2x=2^{2019}-2^3$ $⇒x=3$ $\text{Xin hay nhất}$ Bình luận
Đáp án: x=3
Giải thích các bước giải:
$\begin{array}{l}
A = {2^x} + {2^{x + 1}} + {2^{x + 2}} + … + {2^{x + 2015}}\\
\Rightarrow 2A = {2^{x + 1}} + {2^{x + 1}} + {2^{x + 3}} + .. + {2^{x + 2016}}\\
\Rightarrow 2A – A = {2^{x + 2016}} – {2^x}\\
\Rightarrow A = {2^x}{.2^{2016}} – {2^x}\\
\Rightarrow {2^x}{.2^{2016}} – {2^x} = {2^{2019}} – 8 = {2^{2019}} – {2^3}\\
\Rightarrow x = 3
\end{array}$
Em tham khảo
$N=2^x+2^{x+1}+2^{x+2}+….+2^{x+2015}$
$⇒2N=2^{x+1}+2^{x+2}+….+2^{x+2016}$
$⇒2N-N=(2^{x+1}+2^{x+2}+….+2^{x+2016})-(2^x+2^{x+1}+2^{x+2}+….+2^{x+2015})$
$⇒N=2^{x+2016}-2^x$
$⇒2^{x+2016}-2x=2^{2019}-8$
hay $2^{x+2016}-2x=2^{2019}-2^3$
$⇒x=3$
$\text{Xin hay nhất}$