Tìm x |2x + 3| = x + 2 Tìm GTNN của A = | x – 2006 | + | 2007 – x | khi x thay đổi 02/09/2021 Bởi Kinsley Tìm x |2x + 3| = x + 2 Tìm GTNN của A = | x – 2006 | + | 2007 – x | khi x thay đổi
$\text{Đáp án + Giải thích các bước giải:}$ `|2x+3|=x+2` `(ĐK:x≥-2)` `=>` \(\left[ \begin{array}{l}2x+3=x+2\\2x+3=-x-2\end{array} \right.\) `=>` \(\left[ \begin{array}{l}2x-x=2-3\\2x+x=-2-3\end{array} \right.\) `=>` \(\left[ \begin{array}{l}x=-1\\3x=-5\end{array} \right.\) `=>` \(\left[ \begin{array}{l}x=-1(TM)\\x=-\dfrac{5}{3}(TM)\end{array} \right.\) `\text{Vậy}` `x∈{-1;-(5)/(3)}` `———–` `A=|x-2006|+|2007-x|≥|x-2006+2007-x|=|1|=1` Dấu ” = ” xảy ra khi : `(x-2006)(2007-x)≥0` `+)TH1:` $\left\{\begin{matrix}x-2006≥0& \\2007-x≥0& \end{matrix}\right.$ `=>` $\left\{\begin{matrix}x≥2006& \\x≤2007& \end{matrix}\right.$ `=>2006≤x≤2007` `+)TH2:` $\left\{\begin{matrix}x-2006≤0& \\2007-x≤0& \end{matrix}\right.$ `=>` $\left\{\begin{matrix}x≤2006& \\x≥2007& \end{matrix}\right.$ `=>2007≤x≤2006` ( Loại ) Vậy `GTNNNN` của `A = 1` khi `2006≤x≤2007` Bình luận
\(\begin{array}{l}1)\quad |2x+3| = x + 2\\\Leftrightarrow \left[\begin{array}{l}2x + 3 = x + 2\\- 2x – 3 = x + 2\end{array}\right.\\\Leftrightarrow \left[\begin{array}{l}x = -1\\3x = -5\end{array}\right.\\\Leftrightarrow \left[\begin{array}{l}x = – 1\\x = – \dfrac53\end{array}\right.\\2)\quad A = |x-2006| + |2007 – x| \geqslant |x- 2006 + 2007 – x| = 1\\\text{Dấu = xảy ra}\ \Leftrightarrow (x-2006)(2007-x) \geqslant 0\Leftrightarrow 2006 \leqslant x \leqslant 2007\\\text{Vậy GTNN của A là}\ 1 \Leftrightarrow 2006\leqslant x \leqslant 2007\end{array}\) Bình luận
$\text{Đáp án + Giải thích các bước giải:}$
`|2x+3|=x+2` `(ĐK:x≥-2)`
`=>` \(\left[ \begin{array}{l}2x+3=x+2\\2x+3=-x-2\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}2x-x=2-3\\2x+x=-2-3\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}x=-1\\3x=-5\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}x=-1(TM)\\x=-\dfrac{5}{3}(TM)\end{array} \right.\)
`\text{Vậy}` `x∈{-1;-(5)/(3)}`
`———–`
`A=|x-2006|+|2007-x|≥|x-2006+2007-x|=|1|=1`
Dấu ” = ” xảy ra khi :
`(x-2006)(2007-x)≥0`
`+)TH1:`
$\left\{\begin{matrix}x-2006≥0& \\2007-x≥0& \end{matrix}\right.$
`=>` $\left\{\begin{matrix}x≥2006& \\x≤2007& \end{matrix}\right.$
`=>2006≤x≤2007`
`+)TH2:`
$\left\{\begin{matrix}x-2006≤0& \\2007-x≤0& \end{matrix}\right.$
`=>` $\left\{\begin{matrix}x≤2006& \\x≥2007& \end{matrix}\right.$
`=>2007≤x≤2006` ( Loại )
Vậy `GTNNNN` của `A = 1` khi `2006≤x≤2007`
\(\begin{array}{l}
1)\quad |2x+3| = x + 2\\
\Leftrightarrow \left[\begin{array}{l}2x + 3 = x + 2\\- 2x – 3 = x + 2\end{array}\right.\\
\Leftrightarrow \left[\begin{array}{l}x = -1\\3x = -5\end{array}\right.\\
\Leftrightarrow \left[\begin{array}{l}x = – 1\\x = – \dfrac53\end{array}\right.\\
2)\quad A = |x-2006| + |2007 – x| \geqslant |x- 2006 + 2007 – x| = 1\\
\text{Dấu = xảy ra}\ \Leftrightarrow (x-2006)(2007-x) \geqslant 0\Leftrightarrow 2006 \leqslant x \leqslant 2007\\
\text{Vậy GTNN của A là}\ 1 \Leftrightarrow 2006\leqslant x \leqslant 2007
\end{array}\)